9. Using our text’s z-table, find the proportion under the curve that lies between each of the following: a. The mean & z = 1.96 b. The mean & z = -0.83 c. z = -1.5 & z = 1.5 d. z = -0.3 & z = -0.1 e. z = -1.65 & z = 1.45
Solution :
Using standard normal table,
(a)
P(0 < z < 1.96) = P(z < 1.6) - P(z < 0) = 0.975 - 0.5 = 0.475
Proportion = 0.475
(b)
P( -0.83 < z < 0) = P(z < 0) - P(z < -0.83) = 0.5 - 0.2033 = 0.2967
(c)
P(-1.5 < z < 1.5) = P(z < 1.5) - P(z < -1.5) = 0.9332 - 0.0668 = 0.8664
Proportion = 0.8664
(d)
P(-0.3 < z < -0.1) = P(z < -0.1) - P(z < -0.3) = 0.4602 - 0.3821 = 0.0781
(e)
P(-1.65 < z < 1.45) = P(z < 1.45) - P(z < -1.65) = 0.9265 - 0.0495 = 0.877
Proportion = 0.877
(e)
Get Answers For Free
Most questions answered within 1 hours.