Height |
58 |
58 |
59 |
61 |
61 |
63 |
64 |
65 |
67 |
67 |
67 |
70 |
72 |
72 |
72 |
Weight |
117 |
117 |
120 |
123 |
123 |
139 |
142 |
142 |
146 |
146 |
150 |
150 |
150 |
154 |
164 |
Height, X | Weight, Y | XY | X² | Y² |
58 | 117 | 6786 | 3364 | 13689 |
58 | 117 | 6786 | 3364 | 13689 |
59 | 120 | 7080 | 3481 | 14400 |
61 | 123 | 7503 | 3721 | 15129 |
61 | 123 | 7503 | 3721 | 15129 |
63 | 139 | 8757 | 3969 | 19321 |
64 | 142 | 9088 | 4096 | 20164 |
65 | 142 | 9230 | 4225 | 20164 |
67 | 146 | 9782 | 4489 | 21316 |
67 | 146 | 9782 | 4489 | 21316 |
67 | 150 | 10050 | 4489 | 22500 |
70 | 150 | 10500 | 4900 | 22500 |
72 | 150 | 10800 | 5184 | 22500 |
72 | 154 | 11088 | 5184 | 23716 |
72 | 164 | 11808 | 5184 | 26896 |
Ʃx = | Ʃy = | Ʃxy = | Ʃx² = | Ʃy² = |
976 | 2083 | 136543 | 63860 | 292429 |
Sample size, n = | 15 |
x̅ = Ʃx/n = 976/15 = | 65.0666667 |
y̅ = Ʃy/n = 2083/15 = | 138.866667 |
SSxx = Ʃx² - (Ʃx)²/n = 63860 - (976)²/15 = | 354.933333 |
SSyy = Ʃy² - (Ʃy)²/n = 292429 - (2083)²/15 = | 3169.73333 |
SSxy = Ʃxy - (Ʃx)(Ʃy)/n = 136543 - (976)(2083)/15 = | 1009.13333 |
a) Scatterplot:
There is a positive relationship between Height and weight.
b) Correlation coefficient, r = SSxy/√(SSxx*SSyy) = 1009.13333/√(354.93333*3169.73333) = 0.9514
There is a positive and strong correlation between height and weight. As height increases weight increases.
c) Slope, b = SSxy/SSxx = 2.84316304
y-intercept, a = y̅ -b* x̅ = -46.1284748
Regression equation :
ŷ = -46.1285 + (2.8432) x
Get Answers For Free
Most questions answered within 1 hours.