Question

Which group would have a larger standard deviation: heights of NBA players or heights of the...

Which group would have a larger standard deviation: heights of NBA players or heights of the general population? Justify your answer.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
a. The heights of NBA players are normally distributed, with an average height of 6'7" (i.e....
a. The heights of NBA players are normally distributed, with an average height of 6'7" (i.e. 79 inches), and a standard deviation of 3.5". You take a random sample of 8 players, and calculate their average height. What is the probability that this sample average is less than 78 inches? b. Birth weights are distributed normally, with a mean of 3.39kg and a standard deviation of 0.55kg. Round your answer to three decimal places, e.g. 0.765. What is the probability...
The height of NBA basketball players are approximately normally distributed with a mean of 78.36 inches...
The height of NBA basketball players are approximately normally distributed with a mean of 78.36 inches and a standard deviation of 4.27 inches a) determine the height of an NBA player at the 60th percentile. b) determine the height of an NBA player at the 10th percentile and c) determine the range of heights that represent the middle 95% of all heights for NBA basketball players.
assuming that the heights of NBA players is normally distributed with a mean of 77 inches...
assuming that the heights of NBA players is normally distributed with a mean of 77 inches and a standard deviation of 2.2 inches, calculate the following, A.what is the z-score for the height of 73inches? b. what is the proportion corresponding to a height of 80 inches c.what is the height of a player at the 15th percentile d.if we want to select only those players who are in the top 5% in terms of height, what height would we...
The average height of an NBA player is 6.698 feet. A random sample of 30 players’...
The average height of an NBA player is 6.698 feet. A random sample of 30 players’ heights from a major college basketball program found the mean height was 6.75 feet with a standard deviation of 5.5 inches. At α = 0.05, is there sufficient evidence to conclude that the mean height differs from 6.698 feet?
A sample of 49 NBA players are randomly collected. Their average height x¯=6.7x¯=6.7 feet and the...
A sample of 49 NBA players are randomly collected. Their average height x¯=6.7x¯=6.7 feet and the sample standard deviation is s=3.5 feet. Use these data as a pilot study to determine how many NBA players we should sample such that our 94% confidence interval is within 0.5 feet (half length of confidence interval) of the population mean?
The population standard deviation for the height of college football players is 3.3 inches. If we...
The population standard deviation for the height of college football players is 3.3 inches. If we want to estimate a 90% confidence interval for the population mean height of these players with a 0.7 margin of error, how many randomly selected players must be surveyed? (Round up your answer to nearest whole number) Answer:
The population standard deviation for the height of college hockey players is 3.4 inches. If we...
The population standard deviation for the height of college hockey players is 3.4 inches. If we want to estimate 90% confidence interval for the population mean height of these players with a 0.6 margin of error, how many randomly selected players must be surveyed? (Round up your answer to nearest whole number) Answer:
The population standard deviation for the height of college basketball players is 2.9 inches. If we...
The population standard deviation for the height of college basketball players is 2.9 inches. If we want to estimate 92% confidence interval for the population mean height of these players with a 0.6 margin of error, how many randomly selected players must be surveyed? (Round up your answer to nearest whole number)
The population standard deviation for the height of college basketball players is 3.1 inches. If we...
The population standard deviation for the height of college basketball players is 3.1 inches. If we want to estimate 99% confidence interval for the population mean height of these players with a 0.58 margin of error, how many randomly selected players must be surveyed? (Round up your answer to nearest whole number)
The population standard deviation for the height of college basketball players is 3 inches. If we...
The population standard deviation for the height of college basketball players is 3 inches. If we want to estimate 99% confidence interval for the population mean height of these players with a 0.7 margin of error, how many randomly selected players must be surveyed?  (Round up your answer to nearest whole number)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT