Question

Find the following probabilities: Please show work a) Pr{Z < 0.33} b) Pr{Z ≥ -0.33} c)...

Find the following probabilities: Please show work

a) Pr{Z < 0.33}

b) Pr{Z ≥ -0.33}
c) Pr{-1.67 < Z < 1.67}

d) Pr{-2.91 < Z < 0.0}

e) Pr{Z < -1.03 or Z > 1.03}

(you want the probability that Z is outside the range -1.03 to 1.03)

Homework Answers

Answer #1

Solution:

Given that,

Using standard normal table

a) P ( Z < 0.33)

P ( Z < 0.33) = 0.6293

b) P ( Z -0.33 )

= 1 - P ( Z - 0.33 )

= 1 - 0.3707

= 0.6293

P ( Z -0.33 ) = 0.6293

c) P( -1.67 < Z < 1.67 )

P ( Z < 1.67 ) - P ( Z < -1.67 )

= 0.9525 - 0.0475

= 0.9050

P( -1.67 < Z < 1.67 ) = 0.9050

d) P( -2.91 < Z < 0.0)

P ( Z < 0.0) - P ( Z < -2.91 )

= 0.5000 - 0.0018

= 0.4982

P( -2.91 < Z < 0.0) = 0.4982

e) P ( Z < -1.03 or Z > 1.03)

P(Z < -1.03 )

P(Z < -1.03 ) = 0.1515

P ( Z > 1.03 )

= 1 - P ( Z < 1.03 )

= 1 - 0.8485

= 0.1515

P ( Z > 1.03 ) = 0.1515

P ( Z < -1.03 or Z > 1.03)

=  0.1515 +  0.1515

= 0.3030

P ( Z < -1.03 or Z > 1.03) = 0.3030

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Find the following probabilities: a) Pr{Z < 0.33} b) Pr{Z ≥ −0.33} c) Pr{−2.06 < Z...
Find the following probabilities: a) Pr{Z < 0.33} b) Pr{Z ≥ −0.33} c) Pr{−2.06 < Z < 2.06} d) Pr{−2.06 < Z < 0.0} e) Pr{−4.00 < Z < 0.0} f) Pr{Z < −1.75 or Z > 1.75} (you want the probability that Z is outside the range −1.75 to 1.75) g) Pr{−1.75 < Z < 1.75}
1) Find the following probabilities: a) Pr{Z < 0.63} b)Pr{Z ≥ −0.63} c) Pr{−2.12 < Z...
1) Find the following probabilities: a) Pr{Z < 0.63} b)Pr{Z ≥ −0.63} c) Pr{−2.12 < Z < 2.12} d) Pr{−2.12 < Z < 0.0} e) Pr{−4.00 < Z < 0.0} f) Pr{Z < −1.32 or Z > 1.32} (you want the probability that Z is outside the range −1.32 to 1.32) g) Pr{−1.32 < Z < 1.32} h) Add (f) and (g). Are you surprised? Why or why not?
1) Find the following probabilities: a) Pr{Z < 0.67} b) Pr{Z ≥ -0.67} c) Pr{-2.05 <...
1) Find the following probabilities: a) Pr{Z < 0.67} b) Pr{Z ≥ -0.67} c) Pr{-2.05 < Z < 2.05} d) Pr{-2.91 < Z < 0.31} e) Pr{Z < -2.03 or Z > 2.03} (you want the probability that Z is outside the range -3.03 to 3.03) 2) Assuming that for the height of women, μ = 65.2 inches and σ = 2.9 inches, find the following: a) Pr{Y > 65.7} b) Pr{Y < 57.8} c) Pr{60 < Y < 69}...
a) Pr{Z < 0.63} b) Pr{Z ≥ −0.63} c) Pr{−2.12 < Z < 2.12} d) Pr{−2.12...
a) Pr{Z < 0.63} b) Pr{Z ≥ −0.63} c) Pr{−2.12 < Z < 2.12} d) Pr{−2.12 < Z < 0.0} e) Pr{−4.00 < Z < 0.0} f) Pr{Z < −1.32 or Z > 1.32} (you want the probability that Z is outside the range −1.32 to 1.32) g) Pr{−1.32 < Z < 1.32} h) Add (f) and (g). Are you surprised? Why or why not?
Let X,Y,Z⊆U. If Pr(X)=0.21, Pr(Y)=0.33, Pr(Z)=0.39, Pr(X∩Y)=0.09, Pr(X∩Z)=0.08, Pr(Y∩Z)=0.17, and Pr(X∩Y∩Z)=0.04, find the following values: Pr(X′∩Y∩Z′)....
Let X,Y,Z⊆U. If Pr(X)=0.21, Pr(Y)=0.33, Pr(Z)=0.39, Pr(X∩Y)=0.09, Pr(X∩Z)=0.08, Pr(Y∩Z)=0.17, and Pr(X∩Y∩Z)=0.04, find the following values: Pr(X′∩Y∩Z′). Pr(X′∩(Y∪Z′)). Pr(X′). Pr(X′∪Y∪Z′).
Find the following probabilities: a. P (z > 1.96) b. P (z > .96) c. P...
Find the following probabilities: a. P (z > 1.96) b. P (z > .96) c. P (z > 3.00) d. P (z < 1.96) e. P (z < .49)
Z is a standard normal random variable. Compute the following probabilities. a. P(-1.33 Z 1.67) b....
Z is a standard normal random variable. Compute the following probabilities. a. P(-1.33 Z 1.67) b. P(1.23 Z 1.55) c. P(Z 2.32) d. P(Z -2.08) e. P(Z -1.08)
Find the following probabilities. (Round your answers to four decimal places.) (a)    p(0 < z < 1.45)...
Find the following probabilities. (Round your answers to four decimal places.) (a)    p(0 < z < 1.45) (b)    p(1.03 < z < 1.65) (c)    p(−0.87 < z < 1.72) (d)    p(z < −2.08) (e)    p(−2.31 < z < −1.17) (f)    p(z < 1.52)
Please show formula and work and calculations! thank you! Find a value of the standard normal...
Please show formula and work and calculations! thank you! Find a value of the standard normal random variable z ​, call it z0, such that the following probabilities are satisfied. a. P( - z0 ≤ z ≤ 0) = 0.2612 b. P( -3 < z < z0) = 0.9559
Please show work and calculations! thank you! Find a value of the standard normal random variable...
Please show work and calculations! thank you! Find a value of the standard normal random variable z , call it z0, such that the following probabilities are satisfied. P( -2 < z < z0) = 0.9607
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT