Question

1. A random variable X has pdf fx(x) = c(x-1)      for 1 < x < 4....

1. A random variable X has pdf fx(x) = c(x-1)      for 1 < x < 4.

a. find c.

b. find the pdf of Y =  

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The random variable X has the PDF fX(x) = { 1/4 -3<=x<=1 { 0 otherwise If...
The random variable X has the PDF fX(x) = { 1/4 -3<=x<=1 { 0 otherwise If Y = (X - 2)^2 Find E|Y| Var|Y|
3. Let X be a continuous random variable with PDF fX(x) = c / x^1/2, 0...
3. Let X be a continuous random variable with PDF fX(x) = c / x^1/2, 0 < x < 1. (a) Find the value of c such that fX(x) is indeed a PDF. Is this PDF bounded? (b) Determine and sketch the graph of the CDF of X. (c) Compute each of the following: (i) P(X > 0.5). (ii) P(X = 0). (ii) The median of X. (ii) The mean of X.
5. Let X be a continuous random variable with PDF fX(x)= c(2+x), −2 < x <...
5. Let X be a continuous random variable with PDF fX(x)= c(2+x), −2 < x < −1, c(2−x), 1<x<2, 0, elsewhere (a) Find the value of c such that fX(x) is indeed a PDF. (b) Determine the CDF of X and sketch its graph. (c) Find P(X < 1.5). (d) Find m = π0.5 of X. Is it unique?
Let X be a random variable with pdf given by fX(x) = Cx2(1−x)1(0 < x <...
Let X be a random variable with pdf given by fX(x) = Cx2(1−x)1(0 < x < 1), where C > 0 and 1(·) is the indicator function. (a) Find the value of the constant C such that fX is a valid pdf. (b) Find P(1/2 ≤ X < 1). (c) Find P(X ≤ 1/2). (d) Find P(X = 1/2). (e) Find P(1 ≤ X ≤ 2). (f) Find EX.
A random variable X has the pdf given by fx(x) = cx^-3, x .> 2 with...
A random variable X has the pdf given by fx(x) = cx^-3, x .> 2 with a constant c. Find a) the value of c b) the probability P(3<X<5) c) the mean E(X)
4. Consider a continuous random variable X which has pdf fX(x) = 1/7, 0 < x...
4. Consider a continuous random variable X which has pdf fX(x) = 1/7, 0 < x < 7. (a) Find the values of µ and σ^ 2 . (You may recognize the model above, and if you do, it is OK to simply write down the answers if you know them.) (b) A random sample of size n = 28 is taken from the above distribution. Find, approximately, IP(3.3 ≤ X ≤ 3.51). Hint: use the CLT.
Let X be a continuous random variable with a PDF of the form fX(x)={c(1−x),0,if x∈[0,1],otherwise. Find...
Let X be a continuous random variable with a PDF of the form fX(x)={c(1−x),0,if x∈[0,1],otherwise. Find the following values. 1. c= 2. P(X=1/2)= 3. P(X∈{1/k:k integer, k≥2})= 4. P(X≤1/2)=
Let X be a continuous random variable with a PDF of the form fX(x)={c(1−x),0,if x∈[0,1],otherwise. c=...
Let X be a continuous random variable with a PDF of the form fX(x)={c(1−x),0,if x∈[0,1],otherwise. c= P(X=1/2)= P(X∈{1/k:k integer, k≥2})= P(X≤1/2)=
Random Variables X and Y have joint PDF fX,Y(x,y) =    c*(x+y)   ,    0<x , x>y                     0&
Random Variables X and Y have joint PDF fX,Y(x,y) =    c*(x+y)   ,    0<x , x>y                     0             ,     otherwise a. Find the value of the constant c. b. Find P[x < 1 and  y < 2]
Let X and Y be random variables with the joint pdf fX,Y(x,y) = 6x, 0 ≤...
Let X and Y be random variables with the joint pdf fX,Y(x,y) = 6x, 0 ≤ y ≤ 1−x, 0 ≤ x ≤1. 1. Are X and Y independent? Explain with a picture. 2. Find the marginal pdf fX(x). 3. Find P( Y < 1/8 | X = 1/2 )