Question

Suppose that 4% of the 2 million high school students who take the SAT each year...

Suppose that 4% of the 2 million high school students who take the SAT each year receive special accommodations because of documented disabilities. Consider a random sample of 35 students who have recently taken the test. (Round your probabilities to three decimal places.)

(d) What is the probability that the number among the 35 who received a special accommodation is within 2 standard deviations of the number you would expect to be accommodated?

Homework Answers

Answer #1

Solution:

Given that:

The probability that the number among the 35 who received a special accommodation is within 2 standard deviations of the number you would expect to be accommodated.

  

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose that 4% of the 2 million high school students who take the SAT each year...
Suppose that 4% of the 2 million high school students who take the SAT each year receive special accommodations because of documented disabilities. Consider a random sample of 15 students who have recently taken the test. (Round your probabilities to three decimal places.) Suppose that a student who does not receive a special accommodation is allowed 3 hours for the exam, whereas an accommodated student is allowed 4.5 hours. What would you expect the average time allowed the 15 selected...
A researcher wants to determine whether high school students who attend an SAT preparation course score...
A researcher wants to determine whether high school students who attend an SAT preparation course score significantly different on the SAT than students who do not attend the preparation course. For those who do not attend the course, the population mean is 1050 (? = 1050). The 16 students who attend the preparation course average 1150 on the SAT, with a sample standard deviation of 300. On the basis of these data, can the researcher conclude that the preparation course...
High school students are faced with taking the ACT or the SAT tests to measure their...
High school students are faced with taking the ACT or the SAT tests to measure their readiness to start college. Quantitative SAT scores have a mean of 1525 and a standard deviation of 305 while quantitative ACT scores have a mean of 25.1 and a standard deviation of 6.     a. A student takes the ACT and receives a score of 35 while another takes the SAT and receives a score of 2202. Which student has scored higher relatively speaking? b....
3. High school students are faced with taking the ACT or the SAT tests to measure...
3. High school students are faced with taking the ACT or the SAT tests to measure their readiness to start college. Quantitative SAT scores have a mean of 1509 and a standard deviation of 312 while quantitative ACT scores have a mean of 21.1 and a standard deviation of 5.    a. A student takes the ACT and receives a score of 35 while another takes the SAT and receives a score of 2202. Which student has scored higher relatively...
Retaking the SAT: Many high school students take the SAT's twice; once in their Junior year...
Retaking the SAT: Many high school students take the SAT's twice; once in their Junior year and once in their Senior year. In a sample of 50 such students, the score on the second try was, on average, 35 points above the first try with a standard deviation of 13 points. Test the claim that retaking the SAT increases the score on average by more than 30 points. Test this claim at the 0.05 significance level. (a) The claim is...
A high school principle currently encourages students to enroll in a specific SAT prep program that...
A high school principle currently encourages students to enroll in a specific SAT prep program that has a reputation of improving score by 50 points on average. A new SAT prep program has been released and claims to be better than their current program. The principle is thinking of advertising this new program to students if there is enough evidence at the 5% level that their claim is true. The principle tests the following hypotheses: H0:μ=50 points HA:μ>50 points where...
Retaking the SAT: Many high school students take the SAT's twice; once in their Junior year...
Retaking the SAT: Many high school students take the SAT's twice; once in their Junior year and once in their Senior year. In a sample of 55 such students, the score on the second try was, on average, 34 points above the first try with a standard deviation of 15 points. Test the claim that retaking the SAT increases the score on average by more than 30 points. Test this claim at the 0.10 significance level. (a) The claim is...
Retaking the SAT: Many high school students take the SAT's twice; once in their Junior year...
Retaking the SAT: Many high school students take the SAT's twice; once in their Junior year and once in their Senior year. In a sample of 55 such students, the score on the second try was, on average, 33 points above the first try with a standard deviation of 14 points. Test the claim that retaking the SAT increases the score on average by more than 30 points. Test this claim at the 0.01 significance level. (a) The claim is...
Retaking the SAT: Many high school students take the SAT's twice; once in their Junior year...
Retaking the SAT: Many high school students take the SAT's twice; once in their Junior year and once in their Senior year. In a sample of 50 such students, the score on the second try was, on average, 30 points above the first try with a standard deviation of 14 points. Test the claim that retaking the SAT increases the score on average by more than 25 points. Test this claim at the 0.10 significance level. (a) The claim is...
Retaking the SAT: Many high school students take the SAT's twice; once in their Junior year...
Retaking the SAT: Many high school students take the SAT's twice; once in their Junior year and once in their Senior year. In a sample of 50 such students, the score on the second try was, on average, 29 points above the first try with a standard deviation of 15 points. Test the claim that retaking the SAT increases the score on average by more than 25 points. Test this claim at the 0.01 significance level. (a) The claim is...