I would really appreciate if you do it in SPSS, otherwise do it in Excel. Thanks!
Run the regression again without the potential confounding variable and discuss the impact on the coefficient of the primary independent variable. Did it change? If so, to what extent did it change? Based on this, do you think the added variable confounds the association between the independent and dependent variables? Interpret the results.
Independent variable: Minutes exercise
Dependent variable: Annual income
Counfonding variable: Education Level
Minutes_Exercise | Annual_Income* | Education_Level*** |
90 | 51000 | 2 |
50 | 23000 | 2 |
65 | 35000 | 3 |
20 | 10000 | 1 |
50 | 28000 | 1 |
25 | 5000 | 2 |
110 | 46000 | 3 |
50 | 36000 | 1 |
40 | 51000 | 2 |
80 | 12000 | 2 |
120 | 78000 | 3 |
80 | 34000 | 1 |
60 | 15000 | 1 |
150 | 28000 | 3 |
75 | 28000 | 2 |
80 | 24000 | 1 |
110 | 55000 | 2 |
80 | 62000 | 3 |
100 | 32000 | 2 |
0 | 7000 | 1 |
50 | 17000 | 2 |
200 | 64000 | 3 |
60 | 5000 | 2 |
65 | 14000 | 1 |
40 | 20000 | 1 |
65 | 72000 | 3 |
70 | 85000 | 3 |
45 | 15000 | 1 |
75 | 64000 | 3 |
50 | 27000 | 3 |
Independent variable: Minutes exercise
Dependent variable: Annual income
Counfonding variable: Education Level
Regression output without Counfonding variable:
Regression Statistics | ||||||
Multiple R | 0.50650506 | |||||
R Square | 0.256547376 | |||||
Adjusted R Square | 0.229995497 | |||||
Standard Error | 20073.22859 | |||||
Observations | 30 | |||||
ANOVA | ||||||
df | SS | MS | F | Significance F | ||
Regression | 1 | 3893200499 | 3893200499 | 9.662117396 | 0.004288622 | |
Residual | 28 | 11282166167 | 402934506 | |||
Total | 29 | 15175366667 | ||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | |
Intercept | 13584.73078 | 7737.415446 | 1.755719448 | 0.09007202 | -2264.64628 | 29434.10784 |
Minutes_Exercise | 294.8761377 | 94.86444593 | 3.108394665 | 0.004288622 | 100.5551291 | 489.1971462 |
Annual income = 13584+294.87*Minutes exercise.
R square value is only 0.25. Hence this is not a effective equation
Regression output with Counfonding variable:
Regression Statistics | ||||||
Multiple R | 0.678587671 | |||||
R Square | 0.460481227 | |||||
Adjusted R Square | 0.420516873 | |||||
Standard Error | 17413.69747 | |||||
Observations | 30 | |||||
ANOVA | ||||||
df | SS | MS | F | Significance F | ||
Regression | 2 | 6987971457 | 3493985728 | 11.52229888 | 0.00024104 | |
Residual | 27 | 8187395210 | 303236859.6 | |||
Total | 29 | 15175366667 | ||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | |
Intercept | -4015.193133 | 8683.64939 | -0.46238545 | 0.647509608 | -21832.56995 | 13802.18368 |
Education_Level*** | 14595.47627 | 4568.724917 | 3.194649827 | 0.003546758 | 5221.227061 | 23969.72547 |
Minutes_Exercise | 133.5161104 | 96.55977653 | 1.38273011 | 0.178078032 | -64.60818572 | 331.6404066 |
Annual income = -4015.19+133.51*Minutes exercise + 14595.47*Education_Level
So coefficient of primary Independent variable changed from 133.51 to 294.87
Get Answers For Free
Most questions answered within 1 hours.