Question

A student researcher compares the ages of cars owned by students and cars owned by faculty...

A student researcher compares the ages of cars owned by students and cars owned by faculty at a local State College. A sample of 98 cars owned by students had an average age of 8.39 years. A sample of 80 cars owned by faculty had an average age of 5.03 years. Assume that the population standard deviation for cars owned by students is 2.93 years, while the population standard deviation for cars owned by faculty is 3.42 years. Determine the 98% confidence interval for the difference between the true mean ages for cars owned by students and faculty.

Step 1of 3: Find the point estimate for the true difference between the population means.

Step 2 of 3: Find the margin of error of a confidence interval for the difference between the two population means. Round to 6 decimals.

Step 3 of 3: Construct the 98% confidence interval. Round to 2 decimals.


Homework Answers

Answer #1

I HOPE I WAS HELPFUL AND HAVE CLEARED YOUR DOUBTS.

THANKYOU

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A student researcher compares the ages of cars owned by students and cars owned by faculty...
A student researcher compares the ages of cars owned by students and cars owned by faculty at a local state college. A sample of 8484 cars owned by students had an average age of 5.78 years. A sample of 118 cars owned by faculty had an average age of 5.79 years. Assume that the population standard deviation for cars owned by students is 2.39 years, while the population standard deviation for cars owned by faculty is 3.27 years. Determine the...
A student researcher compares the ages of cars owned by students and cars owned by faculty...
A student researcher compares the ages of cars owned by students and cars owned by faculty at a local state college. A sample of 98 cars owned by students had an average age of 8.57 years. A sample of 146 cars owned by faculty had an average age of 8.1 years. Assume that the population standard deviation for cars owned by students is 2.89 years, while the population standard deviation for cars owned by faculty is 3.85 years. Determine the...
A student researcher compares the ages of cars owned by students and cars owned by faculty...
A student researcher compares the ages of cars owned by students and cars owned by faculty at a local state college. A sample of 224 cars owned by students had an average age of 5.06 years. A sample of 233 cars owned by faculty had an average age of 7.19 years. Assume the standard deviation is known to be 3.42 years for age of cars owned by students and 2.81 years for age of cars owned by faculty. Determine the...
A student researcher compares the ages of cars owned by students and cars owned by faculty...
A student researcher compares the ages of cars owned by students and cars owned by faculty at a local state college. A sample of 263 cars owned by students had an average age of 7.25 years. A sample of 291 cars owned by faculty had an average age of 7.12 years. Assume that the population standard deviation for cars owned by students is 3.77 years, while the population standard deviation for cars owned by faculty is 2.99 years. Determine the...
A student researcher compares the ages of cars owned by students and cars owned by faculty...
A student researcher compares the ages of cars owned by students and cars owned by faculty at a local state college. A sample of 263 cars owned by students had an average age of 7.25 years. A sample of 291 cars owned by faculty had an average age of 7.12 years. Assume that the population standard deviation for cars owned by students is 3.77 years, while the population standard deviation for cars owned by faculty is 2.99 years. Determine the...
A student researcher compares the ages of cars owned by students and cars owned by faculty...
A student researcher compares the ages of cars owned by students and cars owned by faculty at a local state college. A sample of 233233 cars owned by students had an average age of 6.626.62 years. A sample of 280280 cars owned by faculty had an average age of 7.947.94 years. Assume that the population standard deviation for cars owned by students is 2.132.13 years, while the population standard deviation for cars owned by faculty is 3.143.14 years. Determine the...
A student researcher compares the ages of cars owned by students and cars owned by faculty...
A student researcher compares the ages of cars owned by students and cars owned by faculty at a local state college. A sample of 233 cars owned by students had an average age of 6.62 years. A sample of 280 cars owned by faculty had an average age of 7.94 years. Assume that the population standard deviation for cars owned by students is 2.13 years, while the population standard deviation for cars owned by faculty is 3.14 years. Determine the...
A student researcher compares the heights of American students and non-American students from the student body...
A student researcher compares the heights of American students and non-American students from the student body of a certain college in order to estimate the difference in their mean heights. A random sample of 12 American students had a mean height of 70.7 inches with a standard deviation of 2.41 inches. A random sample of 17 non-American students had a mean height of 62.7 inches with a standard deviation of 3.07 inches. Determine the 98% confidence interval for the true...
A student researcher compares the heights of American students and non-American students from the student body...
A student researcher compares the heights of American students and non-American students from the student body of a certain college in order to estimate the difference in their mean heights. A random sample of 18 American students had a mean height of 70.5 inches with a standard deviation of 2.26 inches. A random sample of 12 non-American students had a mean height of 65.8 inches with a standard deviation of 2.44 inches. Determine the 98% confidence interval for the true...
A researcher compares the effectiveness of two different instructional methods for teaching physiology. A sample of...
A researcher compares the effectiveness of two different instructional methods for teaching physiology. A sample of 189 students using Method 1 produces a testing average of 71.9. A sample of 141 students using Method 2 produces a testing average of 78.3. Assume that the population standard deviation for Method 1 is 11.07, while the population standard deviation for Method 2 is 11.9. Determine the 98% confidence interval for the true difference between testing averages for students using Method 1 and...