For each of the following data sets, choose the most appropriate response from the choices below the table. | ||||||||
Data Set #1 | Data Set #2 | |||||||
x | y | x | y | |||||
10 | 18 | -22 | 92 | |||||
13 | 12 | -19 | 85 | |||||
18 | 8 | -16 | 71 | |||||
24 | 2 | -13 | 75 | |||||
27 | 0 | -10 | 68 | |||||
32 | 4 | -7 | 69 | |||||
21 | 7 | -5 | 66 | |||||
41 | 13 | 0 | 62 | |||||
45 | 17 | 2 | 59 | |||||
a. | A strong positive linear relation exists | a. | A strong positive linear relation exists | |||||
b. | A strong negative linear relation exists | b. | A strong negative linear relation exists | |||||
c. | No linear relation exists | c. | No linear relation exists | |||||
Determine the linear correlation coefficient for each dataset in problem #10. | ||||||||
Linear Correlation for Data Set #1: | ||||||||
Linear Correlation for Data Set #2: |
Data Set 1
c. No linear relation exists
X Values
∑ = 231
Mean = 25.667
∑(X - Mx)2 = SSx = 1140
Y Values
∑ = 81
Mean = 9
∑(Y - My)2 = SSy = 330
X and Y Combined
N = 9
∑(X - Mx)(Y - My) = 22
R Calculation
r = ∑((X - My)(Y - Mx)) /
√((SSx)(SSy))
r = 22 / √((1140)(330)) = 0.0359
Data set 2
b. A strong negative linear relation exists
X Values
∑ = -90
Mean = -10
∑(X - Mx)2 = SSx = 548
Y Values
∑ = 647
Mean = 71.889
∑(Y - My)2 = SSy = 908.889
X and Y Combined
N = 9
∑(X - Mx)(Y - My) = -655
R Calculation
r = ∑((X - My)(Y - Mx)) /
√((SSx)(SSy))
r = -655 / √((548)(908.889)) = -0.9281
Get Answers For Free
Most questions answered within 1 hours.