Given a population in which the probability of success is
pequals=0.65,
if a sample of
300
items is taken, then complete parts a and b.
a. |
Calculate the probability the proportion of successes in the
sample will be between
0.62 and0.67 |
b. |
Calculate the probability the proportion of successes in the
sample will be between
0.62 and0.67 if the sample size is100 |
a. The probability the proportion of successes in the sample will be between
0.62
and
0.67
is
nothing.
Using central limit theorem,
P( < p ) = P( Z < - p / sqrt( p( 1 - p) / n)
a)
P( 0.62 < < 0.67) = P( < 0.67) - P( < 0.62)
= P( Z < 0.67 - 0.65 / sqrt( 0.65 * 0.35 / 300) - P( Z < 0.62 - 0.65 / sqrt( 0.65 * 0.35 / 300)
= P( Z < 0.7263) - P( Z < -1.0894)
= 0.7662 - 0.1380
= 0.6282
b)
For n = 100
P( 0.62 < < 0.67) = P( < 0.67) - P( < 0.62)
= P( Z < 0.67 - 0.65 / sqrt( 0.65 * 0.35 / 100) - P( Z < 0.62 - 0.65 / sqrt( 0.65 * 0.35 / 100)
= P( Z < 0.4193) - P (Z < -0.6290)
= 0.6625 - 0.2647
= 0.3978
Get Answers For Free
Most questions answered within 1 hours.