Question

The following data represent soil water content (percentage of water by volume) for independent random samples...

The following data represent soil water content (percentage of water by volume) for independent random samples of soil taken from two experimental fields growing bell peppers.

Soil water content from field I: x1; n1 = 72

15.2 11.3 10.1 10.8 16.6 8.3 9.1 12.3 9.1 14.3 10.7 16.1 10.2 15.2 8.9 9.5 9.6 11.3 14.0 11.3 15.6 11.2 13.8 9.0 8.4 8.2 12.0 13.9 11.6 16.0 9.6 11.4 8.4 8.0 14.1 10.9 13.2 13.8 14.6 10.2 11.5 13.1 14.7 12.5 10.2 11.8 11.0 12.7 10.3 10.8 11.0 12.6 10.8 9.6 11.5 10.6 11.7 10.1 9.7 9.7 11.2 9.8 10.3 11.9 9.7 11.3 10.4 12.0 11.0 10.7 8.5 11.1

Soil water content from field II: x2; n2 = 80 12.1 10.2 13.6 8.1 13.5 7.8 11.8 7.7 8.1 9.2 14.1 8.9 13.9 7.5 12.6 7.3 14.9 12.2 7.6 8.9 13.9 8.4 13.4 7.1 12.4 7.6 9.9 26.0 7.3 7.4 14.3 8.4 13.2 7.3 11.3 7.5 9.7 12.3 6.9 7.6 13.8 7.5 13.3 8.0 11.3 6.8 7.4 11.7 11.8 7.7 12.6 7.7 13.2 13.9 10.4 12.9 7.6 10.7 10.7 10.9 12.5 11.3 10.7 13.2 8.9 12.9 7.7 9.7 9.7 11.4 11.9 13.4 9.2 13.4 8.8 11.9 7.1 8.8 14.0 14.2

Answer the following questions and show your work!

1.) Compute the sample mean and sample standard deviation s of soil water content for field I and for field II.

2.) Let μ1be the population mean for x1and let μ2 be the population mean for x2. Find a 95% confidence interval for μ1 – μ2.

3.) Examine the confidence interval and explain what it means in the context of this problem. Does the interval consist of numbers that are all positive? all negative? of different signs? At the 95% level of confidence, is the population mean soil water content of the field I higher than that of the field II?

4.) Which distribution (Standard Normal or Student’st) did you use? Explain why? Do you need information about the original soil water content distributions?

5.) Use α = 0.01 to test the claim that the population mean soil water content of field I is higher than that of field II. Please provide the following information:

(a) What is the level of significance? State the null and alternate hypotheses.

(b)  What sampling distribution will you use? What assumptions are you making? Compute the sample test statistic to nearest hundredth.

(c) Find (or estimate) the P-value. Sketch the sampling distribution and show the area corresponding to the P-value.

(d) Based on your answers in parts (a) to (c), will you reject or fail to reject the null hypothesis? Are the data statistically significant at level α?

(e) Interpret your conclusion in the context of the application.

Homework Answers

Answer #1

1)

field 1

n1 = 72

Xbar1 = 11.4111

s1 = 2.0911

field 2

n2 = 80

Xbar2 = 10.6563

s2 = 3.0259

2)

df =n1+n2-2 = 150

t = 1.976

The 95% confidence interval is −0.088<μ1​−μ2​<1.597.

3)

Interval contains numbers of different signs

hence we fail to reject the null hypothesis

there is not significant difference between them

4)

we used t-distribution

No,we don't need information about the original soil water content distributions because sample size is large enough to apply central limit theorem

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The following data represent soil water content (percentage of water by volume) for independent random samples...
The following data represent soil water content (percentage of water by volume) for independent random samples of soil taken from two experimental fields growing bell peppers. Soil water content from field I: x1; n1 = 72 15.2 11.3 10.1 10.8 16.6 8.3 9.1 12.3 9.1 14.3 10.7 16.1 10.2 15.2 8.9 9.5 9.6 11.3 14.0 11.3 15.6 11.2 13.8 9.0 8.4 8.2 12.0 13.9 11.6 16.0 9.6 11.4 8.4 8.0 14.1 10.9 13.2 13.8 14.6 10.2 11.5 13.1 14.7 12.5...
We want to compare the soil water content (% water by volume) of two fields growing...
We want to compare the soil water content (% water by volume) of two fields growing bell peppers. The claim is that the two fields have different soil water content. Use the data below to test the hypothesis that the fields have different soil water content. Field 1 is in list1 and Field 2 is in list2. We do not know whether the water content values are normally distributed or not, but their variances are equal. Provide your answers below....
The following data represent soil water content (percentage of water by volume) for independent random samples...
The following data represent soil water content (percentage of water by volume) for independent random samples of soil taken from two experimental fields growing bell peppers. Soil water content from field I: x1; n1 = 72 15.2 11.3 10.1 10.8 16.6 8.3 9.1 12.3 9.1 14.3 10.7 16.1 10.2 15.2 8.9 9.5 9.6 11.3 14.0 11.3 15.6 11.2 13.8 9.0 8.4 8.2 12.0 13.9 11.6 16.0 9.6 11.4 8.4 8.0 14.1 10.9 13.2 13.8 14.6 10.2 11.5 13.1 14.7 12.5...
Will rate, please and thank you! 9. Telephone Interviews: Survey The National Study of the Changing...
Will rate, please and thank you! 9. Telephone Interviews: Survey The National Study of the Changing Work Force conducted an extensive survey of 2958 wage and salaried workers on issues ranging from relationships with their bosses to household chores. The data were gathered through hour-long telephone interviews with a nationally representative sample (The Wall Street Journal). In response to the question “What does success mean to you?” 1538 responded, “Personal satisfaction from doing a good job.” Let p be the...
An important statistical measurement in service facilities (such as restaurants and banks) is the variability in...
An important statistical measurement in service facilities (such as restaurants and banks) is the variability in service times. As an experiment, two bank tellers were observed, and the service times for each of 100 customers were recorded. Do these data allow us to infer at the 5% significance level that the variance in service times differs between the two tellers? Estimate with 95% confidence the ratio of variances of the two bank tellers. Teller 1 Teller 2 7.2 10.9 5.4...
The pathogen Phytophthora capsici causes bell peppers to wilt and die. Because bell peppers are an...
The pathogen Phytophthora capsici causes bell peppers to wilt and die. Because bell peppers are an important commercial crop, this disease has undergone a great deal of agricultural research. It is thought that too much water aids the spread of the pathogen. Two fields are under study. The first step in the research project is to compare the mean soil water content for the two fields. Units are percent water by volume of soil. Field A samples, x1: 10.2 10.7...
In West Texas, water is extremely important. The following data represent pH levels in ground water...
In West Texas, water is extremely important. The following data represent pH levels in ground water for a random sample of 102 West Texas wells. A pH less than 7 is acidic and a pH above 7 is alkaline. Scanning the data, you can see that water in this region tends to be hard (alkaline). Too high a pH means the water is unusable or needs expensive treatment to make it usable.† These data are also available for download at...
In West Texas, water is extremely important. The following data represent pH levels in ground water...
In West Texas, water is extremely important. The following data represent pH levels in ground water for a random sample of 102 West Texas wells. A pH less than 7 is acidic and a pH above 7 is alkaline. Scanning the data, you can see that water in this region tends to be hard (alkaline). Too high a pH means the water is unusable or needs expensive treatment to make it usable.† These data are also available for download at...
To test for any significant difference in the number of hours between breakdowns for four machines,...
To test for any significant difference in the number of hours between breakdowns for four machines, the following data were obtained. Machine 1 Machine 2 Machine 3 Machine 4 6.4 8.8 10.9 9.7 7.9 7.6 10.3 12.6 5.5 9.5 9.6 11.8 7.5 10.3 10.2 10.7 8.4 9.3 9.0 11.0 7.5 10.3 8.8 11.4 a) Use Fisher's LSD procedure to test for the equality of the means for machines 2 and 4. Use a 0.05 level of significance. Find the value...
Use the data in Bank Dataset to answer this question. Construct a 95% confidence interval for...
Use the data in Bank Dataset to answer this question. Construct a 95% confidence interval for the mean increase in deposits. Note that the population standard deviation σ is not known in this case. Instead the sample standard deviation s should be calculated from the sample and the t distribution should be used. 2. What is the margin of error at the 95% confidence level? Bank Dataset of Increase in deposits. Mean is 4. Sample size is 152 customers. 4.3...