x | (x-xbar)^2 | |
4.327 | 0.041616 | |
4.461 | 0.0049 | |
4.547 | 0.000256 | |
4.468 | 0.003969 | |
4.365 | 0.027556 | |
4.707 | 0.030976 | |
4.842 | 0.096721 | |
Sum | 31.717 | 0.205994 |
Mean(x)=xbar=sum(x)/n | 4.531 |
standard deviation(s)=sum(x-xbar)^2/n-1 | 0.18529 |
n | 7 |
for 99 % confidence level with degree of freedom (n-1)=6 | |
c | 0.1 |
degrres of freedom | 6 |
t=critical value obtain using t-table with corresponding df=n-1 | 1.94318 |
Margin of error =t*s/sqrt(n) | 0.136087 |
lower bound =xbar-ME | 4.394913 |
upper bound =xbar+ME | 4.667087 |
Upper bound=4.667
# upper bound of the 99% confidence interval for the mean rate. is 4.667
Get Answers For Free
Most questions answered within 1 hours.