Question

A sample of 25 observations selected from a normally distributed population produced a sample variance of...


A sample of 25 observations selected from a normally distributed population produced a sample variance of 32. Construct a confidence interval for σ2 for each of the following confidence levels and comment on what happens to the confidence interval of σ2when the confidence level decreases.

Round your answers to 1 decimal place.

a. 1 – α = 0.99

lower (?) to upper (?)

b. 1 – α = 0.95

lower (?) to upper (?)

c. 1 – α = 0.90

lower (?) to upper (?)

As the confidence level decreases, the confidence interval for σ2 Choose your answer; As the confidence level decreases, the confidence interval (decreases or increases) in width.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A simple random sample of size n is drawn from a population that is known to...
A simple random sample of size n is drawn from a population that is known to be normally distributed. The sample​ variance, s squared​, is determined to be 11.8. Complete parts​ (a) through​ (c). ​(a) Construct a​ 90% confidence interval for sigma squared if the sample​ size, n, is 20. The lower bound is nothing. ​(Round to two decimal places as​ needed.) The upper bound is nothing. ​(Round to two decimal places as​ needed.) ​ b) Construct a​ 90% confidence...
A simple random sample of size n is drawn from a population that is known to...
A simple random sample of size n is drawn from a population that is known to be normally distributed. The sample​ variance, s squared​, is determined to be 13.4. Complete parts​ (a) through​ (c). ​(a) Construct a​ 90% confidence interval for sigma squared if the sample​ size, n, is 20. The lower bound is nothing. ​(Round to two decimal places as​ needed.) The upper bound is nothing. ​(Round to two decimal places as​ needed.) ​(b) Construct a​ 90% confidence interval...
A simple random sample of size n is drawn from a population that is known to...
A simple random sample of size n is drawn from a population that is known to be normally distributed. The sample​ variance, s squareds2​, is determined to be 12.512.5. Complete parts​ (a) through​ (c). ​(a) Construct a​ 90% confidence interval for sigma squaredσ2 if the sample​ size, n, is 20.The lower bound is nothing. ​(Round to two decimal places as​ needed.)The upper bound is nothing. ​(Round to two decimal places as​ needed.)​(b) Construct a​ 90% confidence interval for sigma squaredσ2...
A simple random sample of size n is drawn from a population that is normally distributed....
A simple random sample of size n is drawn from a population that is normally distributed. The sample​ mean, x​, is found to be 115​, and the sample standard​ deviation, s, is found to be 10. ​(a) Construct a 95​% confidence interval about μ if the sample​ size, n, is 22. ​(b) Construct a 95​% confidence interval about μ if the sample​ size, n, is 12. ​(c) Construct a 90​% confidence interval about μ if the sample​ size, n, is...
A random sample of n = 11 observations was selected from a normal population. The sample...
A random sample of n = 11 observations was selected from a normal population. The sample mean and variance were x = 3.93 and s2 = 0.3216. Find a 90% confidence interval for the population variance σ2. (Round your answers to three decimal places.)
A simple random sample of size n is drawn from a population that is normally distributed....
A simple random sample of size n is drawn from a population that is normally distributed. The sample​ mean, x overbar​, is found to be 108​, and the sample standard​ deviation, s, is found to be 10. 1. A) Construct a 96​% confidence interval about μ if the sample​ size, n, is 24. 1. B) Construct a 96​% confidence interval about μ if the sample​ size, n, is 20. How does increasing the sample size affect the margin of​ error,...
A random sample of 27 observations taken from a population that is normally distributed produced a...
A random sample of 27 observations taken from a population that is normally distributed produced a sample mean of 58.5 and a standard deviation of 7.5. Find the range for the p-value and the critical and observed values of t for the following test of hypothesis, using α=0.01. H0: μ=55 versus H1: μ>55. Use the t distribution table to find a range for the p-value. Round your answers for the values of t to three decimal places. Enter your answer;...
A random sample of 14 observations taken from a population that is normally distributed produced a...
A random sample of 14 observations taken from a population that is normally distributed produced a sample mean of 42.4 and a standard deviation of 8. Find the range for the p-value and the critical and observed values of t for each of the following tests of hypotheses using, α=0.01. Use the t distribution table to find a range for the p-value. Round your answers for the values of t to three decimal places. a. H0: μ=46 versus H1: μ<46....
The random sample shown below was selected from a normal distribution. 5,5,3,10,10,3 a. Construct a 99%...
The random sample shown below was selected from a normal distribution. 5,5,3,10,10,3 a. Construct a 99% confidence interval for the population mean mu. ( , ) (Round to two decimal places as needed.) b. Assume that sample mean and sample standard deviation s remain exactly the same as those you just calculated but that are based on a sample of n = 25 observations. Repeat part a. What is the effect of increasing the sample size on the width of...
A random sample of 24 observations is used to estimate the population mean. The sample mean...
A random sample of 24 observations is used to estimate the population mean. The sample mean and the sample standard deviation are calculated as 104.6 and 28.8, respectively. Assume that the population is normally distributed. Construct the 90% confidence interval for the population mean. Then, construct the 95% confidence interval for the population mean. Finally, use your answers to discuss the impact of the confidence level on the width of the interval.