Question

Tatuo Aida investigated the genetic basis of color variation in the Medaka (Aplocheilus latipes), a small...

Tatuo Aida investigated the genetic basis of color variation in the Medaka (Aplocheilus latipes), a small fish found naturally in Japan (T. Aida. 1021. Genetics 6:554-573). Aida found that genes at two loci (B, b and R, r) determine the color of the fish: fish with a dominant allele at both loci are brown, fish with a dominant allele only at the B locus are blue, fish with a dominant allele only at the R locus are red and fish with recessive alleles at both loci are white. Aida crossed a homozygous brown fish with a homozygous white fish. He then backcrossed the F1 with the homozygous white parent and obtained 228 brown fish, 230 blue fish, 237 red fish and 222 white fish.

b. Use a chi-square test to compare the observed numbers of backcross progeny with the number expected for independently assorting genes.

            What is the chi square value?

            What is/are the degrees of freedom and the approximate p-value?

            What conclusion can you make from your chi-square results?

c. What results (phenotypic and genotypic ratios) would you expect for a cross between a homozygous red fish and a white fish?

Homework Answers

Answer #1

If you Satisfy with Answer, Please give me "Thumb Up". It was very important to me.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
In the California poppy, an allele for yellow flowers (C) is dominant over an allele for...
In the California poppy, an allele for yellow flowers (C) is dominant over an allele for white flowers (c). At an independently assorting locus, an allele for entire petals (F) is dominant over an allele for fringed petals (f). A plant that is homozygous for yellow and entire petals is crossed with a plant that is white and fringed. A resulting F1 plant is then crossed with a plant that is white and fringed, and the following progeny are produced:...
You are studying inheritance of various characters in marigolds including flower color (purple or blue), seed...
You are studying inheritance of various characters in marigolds including flower color (purple or blue), seed color (white or brown) and seed shape (round or oblong). When you cross a plant that is true breeding for blue flowers, white and oblong seeds with a plant that is true breeding for purple flowers, brown and round seeds you find that all of the offspring have blue flowers, and round, white seeds. You then cross these F1 plants with each other and...
Tallness (T ) in snapdragons is dominant to dwarfism (t ), while red (R ) flower...
Tallness (T ) in snapdragons is dominant to dwarfism (t ), while red (R ) flower color is incompletely dominant to white (R' ). The heterozygous condition results in pink (RR' ) flower color. The genes for these traits occur on separate chromosomes. A dwarf, red snapdragon is crossed with a plant homozygous for tallness and white fowers. a) Determine the genotypes of the parents. b) Determine all the types of gametes each parent can produce. c) Complete the Punnett...
In the California poppy, an allele for yellow flowers (C) is dominant over an allele for...
In the California poppy, an allele for yellow flowers (C) is dominant over an allele for white flowers (c).At an independently assorting locus, an allele for entire petals (F) is dominant over an allele for fringed petals (f). A plant that is homozygous for yellow and entire petals is crossed with a plant that is white and fringed. The F1 progeny were then test crossed and the following progeny were produced: 54 yellow and entire, 58 yellow and fringed, 53...
In snapdragons, two genes control flower color, which can be red, pink, or white. Gene A...
In snapdragons, two genes control flower color, which can be red, pink, or white. Gene A encodes an enzyme that makes a precursor to red pigment, and gene R encodes the enzyme that makes the red pigment from the precursor. This makes Gene A epistatic to Gene R (if there is no precursor made, there can be no red pigment). Allele A (pigmented) is completely dominant to a (no pigment, white), and R isincompletely dominant to r. What would be...
1) In cattle, there is no dominance between the alleles for red coat (W) and white...
1) In cattle, there is no dominance between the alleles for red coat (W) and white coat (c). The heterozygote is intermediate or "roan" in color. a) Give the genotypic and phenotypic ratios to be expected following a mating between two roan animals. b) What are the expected genotypic and phenotypic ratios from a cross between a roan animal and a white one? 2) In cattle, the hornless condition (H) is dominant to that for the possession of horns (h)....
Simple Dominance with 2 genes A gene in cats causes them to be black (dominant) or...
Simple Dominance with 2 genes A gene in cats causes them to be black (dominant) or brown (recessive). A second gene causes cats to be agouti (have stripes on their hairs) or non-agouti (solid colored hairs). If you did a dihybrid cross between two black haired agouti cats, what fraction of the offspring would be expected to have each phenotype? If a dihybrid black agouti cat mated with a brown cat that was heterozygous for the agouti gene, what fraction...
) Imagine that you are a grad student in Biological Anthropology, and you travel to the...
) Imagine that you are a grad student in Biological Anthropology, and you travel to the land of “Jenesaiquoivia” to study Jenesaiquoivian genetics. [Footnote 1] You notice that 9 out of every 100 people in your study group have blue eyes. The rest of the population have brown eyes. You know that the brown eyes allele is dominant, and blue eyes is recessive. [2] Construct the Hardy-Weinberg equation for that population. You know that q2=.09 (9%) so p2 plus 2pq...
Question 11 pts ________________ is a specific version of a gene on a homologous chromosome that...
Question 11 pts ________________ is a specific version of a gene on a homologous chromosome that has a corresponding version of a similar gene on a homologous chromosome. For example, hair color gene (ie. red from mom) will be on one homologous chromosome and a possibly different version of hair color gene (ie. black from dad) will be on the other corresponding homologous chromosome. chromosome allele chromatin genome Flag this Question Question 21 pts A ___________ is how you write...
Match the term to the description. Ex 1 = E Terms 1. Alagille                                &n
Match the term to the description. Ex 1 = E Terms 1. Alagille                                                                             Cystic Fibrosis Cri du chat Sickle Cell disease klinefelter syndrome WilliamSyndrome Jacob’s Syndrome X-linked Poly-X female Trisomy 21 Gene Linkage Down Syndrome Turner’s Syndrome Deletion Inversion Duplication 17.Fragile x syndrome 18.Hemophilia   Muscular Dystrophy Color blindness   Achondroplasia independent assortment Huntington Neurofibromatosis 25.Phenylketonuria Tay-Sachs Burkett lymphoma Mendel’s Law of Segregation Mendel’s Law of Independent Assortment Incomplete Dominance Multiple Allelic Traits 32.Polygenic Inheritance 33.Polyploidy 34.Aneuploidy Amniocentesis Chorionic Villi Sampling...