Question

I developed an achievement test and normalized it on people throughout the country over a year....

I developed an achievement test and normalized it on people throughout the country over a year. My test has scores that are normally distributed with a mean of 100 and a standard deviation of 20. a. Find the probability that a randomly selected adult has IQ < 115 b. Find the probability that a randomly selected adult has IQ > 70 c. Find P30, which is the IQ score at the 30th percentile. d. What percentage of adults have scores between 80 and 120?

Homework Answers

Answer #1

Here we have

(a)

The z-score for X = 115 is

The probability that a randomly selected adult has IQ < 115 is

Answer: 0.7734

(b)

The z-score for X = 70 is

The probability that a randomly selected adult has IQ > 70 is

Answer: 0.9332

(c)

Here we need z-score that has 0.30 area to its left. Using z table, z-score -0.52 has approximately 0.30 area to its left. So required X is

Answer: 89.6

(d)

The z-score for X = 80 is

The z-score for X = 120 is

The required percentage is

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A) Assume that adults have IQ scores that are normally distributed with a mean of 100...
A) Assume that adults have IQ scores that are normally distributed with a mean of 100 and a standard deviation of 15. Find the probability that a randomly selected adult has an IQ between 90 and 120. (Provide graphing calculator sequence) B) Assume that adults have IQ scores that are normally distributed with a mean of 100 and a standard of 15. Find P3D, which is the IQ score separating the bottom 30% from the top 70%. (Provide graphing calculator...
Assume that adults have IQ scores that are normally distributed with a mean of mu equals...
Assume that adults have IQ scores that are normally distributed with a mean of mu equals 100 and a standard deviation sigma equals 20. Find the probability that a randomly selected adult has an IQ between 85 and 115. The probability that a randomly selected adult has an IQ between 85 and 115 is:
Assume that adults have IQ scores that are normally distributed with a mean of mu equals...
Assume that adults have IQ scores that are normally distributed with a mean of mu equals 100 and a standard deviation sigma equals 20 . Find the probability that a randomly selected adult has an IQ between 85 and 115 . The probability that a randomly selected adult has an IQ between 85 and 115 is? . ​ (Type an integer or decimal rounded to four decimal places as​ needed.)
Assume that adults have IQ scores that are normally distributed with a mean 105 and standard...
Assume that adults have IQ scores that are normally distributed with a mean 105 and standard deviation of 20. a. Find the probability that a randomly selected adult has an IQ less than 120. b. Find P90 , which is the IQ score separating the bottom 90% from the top 10%. show work
Assume that adults have IQ scores that are normally distributed with a mean of 100 and...
Assume that adults have IQ scores that are normally distributed with a mean of 100 and a standard deviation of 15. Find the probability that a randomly selected adult has an IQ between 115 and 130.           (a) .6700      (b) .1359      (c) .9082      (d) .1596      (e) .1628 5        Refer to question 4 above. Find the IQ score at Q1 or the 25th percentile. This is the score which separates the bottom 25% from the top 75%.           (a) 89.95      (b)...
Suppose scores on an IQ test are normally distributed. If the test has a mean of...
Suppose scores on an IQ test are normally distributed. If the test has a mean of 100 and a standard deviation of 10. 1. What is the probability that a person who is randomly selected will score between 83 and 102? 2. What is the probability that a person who is randomly selected will score more than 119? 3. What IQ score corresponds to the 83rd percentile for all people?
For question 10, assume that adults have IQ scores that are normally distributed with a mean...
For question 10, assume that adults have IQ scores that are normally distributed with a mean of 100 and a standard deviation of 15. Find the probability that a randomly selected adult has an IQ of the following: 10. Find the area under the standard normal curve for the following: • Less than 115. • Greater than 131.5 • Between 90 and 110 • Between 110 and 120
Assume that I don't have IQ scores that are normally distributed with a mean of 105...
Assume that I don't have IQ scores that are normally distributed with a mean of 105 in a standard deviation of 15 find the probability that a randomly selected adult has an IQ between 95 and 115
13. Adult IQ scores are normally distributed with a mean of 100 and a standard deviation...
13. Adult IQ scores are normally distributed with a mean of 100 and a standard deviation of 15. Find the probability that a randomly chosen adult has an IQ between 70 and 115.
7. IQ scores are normally distributed with a mean of 100 and a standard deviation of...
7. IQ scores are normally distributed with a mean of 100 and a standard deviation of 15 points. a. Find the probability that a randomly selected person has an IQ less than 115. b. Find the probability that a randomly selected person has an IQ above 60. c. Find the 80th percentile for IQ scores. d. Find the probability that 20 randomly selected person has an IQ less than 110. e. What percentage of people have IQ scores between 60...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT