For this assignment, we will replicate the DD study by Gruber & Poterba (1994) [`a la Donald & Lang, 2007]. In their study, they estimate the impact of TRA86 on health insurance take-up of ‘self-employed’ workers. The policy intervention they use is a tax subsidy on health insurance purchase for the self-employed introduced in the Tax Reform Act of 1986. There treatment group are the self-employed workers and their control group are the other workers who are employed. In particular, they look at the aggregate insurance rates of these two groups.
Question 1
We will use the data in Table IV of their paper (which is recreated below in Table 1) to replicate their DD results from Table VI of their paper. In particular they find a DD estimate of 6.7 with a standard error of 0.8. Calculate this using the table below. [Hint: refer to Table VI of their study; they compare years 1985-86 to 1988-89]
Table 1: Aggregate Insurance Rates
Year Self-Employed Employed
1982 68.9 88.6
1983 72.0 88.9
1984 68.9 88.1
1985 68.6 88.0
1986 70.1 88.0
1987 76.1 86.8
1988 73.2 86.1
1989 73.5 84.5
Source: Table IV of GP1994
Question 2:
Would the result be different if we had data for the years 1986
and 1988 only. How different is this from Question 1.
Need help with Q2. Q1 just for reference.
1.
Year | Self-Employed | Employed | Difference |
1982 | 68.9 | 88.6 | 19.7 |
1983 | 72 | 88.9 | 16.9 |
1984 | 68.9 | 88.1 | 19.2 |
1985 | 68.6 | 88 | 19.4 |
1986 | 70.1 | 88 | 17.9 |
1987 | 76.1 | 86.8 | 10.7 |
1988 | 73.2 | 86.1 | 12.9 |
1989 | 73.5 | 84.5 | 11 |
87.3750 | mean Employed | ||
71.4125 | mean Self-Employed | ||
15.9625 | mean difference (Employed - Self-Employed) | ||
3.8284 | std. dev. | ||
1.3536 | std. error | ||
8 | n | ||
7 | df |
2.
Year | Self-Employed | Employed | Difference |
1986 | 70.1 | 88 | 17.9 |
1988 | 73.2 | 86.1 | 12.9 |
71.3500 | mean Self-Employed1 | ||
86.6500 | mean Employed | ||
-15.3000 | mean difference (Self-Employed1 - Employed) | ||
3.9925 | std. dev. | ||
1.9962 | std. error | ||
2 | n | ||
1 | df |
Get Answers For Free
Most questions answered within 1 hours.