Question

Assume that the two samples are independent simple random samples selected from normally distributed populations. Do...

Assume that the two samples are independent simple random samples selected from normally distributed populations. Do not assume that the population standard deviations are equal. Simple random samples of​ high-interest ​(8.7​%) mortgages and​ low-interest ​(6.3​%) mortgages were obtained. For the 50 ​high-interest mortgages, the borrowers had a mean credit score of 595.3 and a standard deviation of 12.8. For the 50 ​low-interest mortgages, the borrowers had a mean credit score of 761.1 and a standard deviation of 16.2. Use a 0.05 significance level to test the claim that the mean credit score of borrowers with​ high-interest mortgages is lower than the mean credit score of borrowers with​ low-interest mortgages. Does the credit rating score appear to affect mortgage​ payments? If​ so, how?

Homework Answers

Answer #1

Conclusion: We can conclude that the mean credit score of borrowers with​ high-interest mortgages is lower than the mean credit score of borrowers with​ low-interest mortgages.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Assume that the two samples are independent simple random samples selected from normally distributed populations. Do...
Assume that the two samples are independent simple random samples selected from normally distributed populations. Do not assume that the population standard deviations are equal. A researcher wishes to determine whether the blood pressure of vegetarians is, on average, lower than the blood pressure of nonvegetarians. Independent simple random samples of 85 vegetarians and 75 nonvegetarians yielded the following sample statistics for systolic blood pressure Vegetarians   Nonvegetarians n = 85                x1 = 124.1 mmHg x2 = 138.7 mmHg s1...
Assume that the two samples are independent simple random samples selected from normally distributed populations. Do...
Assume that the two samples are independent simple random samples selected from normally distributed populations. Do not assume that the population standard deviations are equal. Refer to the accompanying data set. Use a 0.010.01 significance level to test the claim that the sample of home voltages and the sample of generator voltages are from populations with the same mean. If there is a statistically significant​ difference, does that difference have practical​ significance? Day HomeHome left parenthesis volts right parenthesis(volts) GeneratorGenerator...
In Exercises 5–20, assume that the two samples are independent simple random samples selected from normally...
In Exercises 5–20, assume that the two samples are independent simple random samples selected from normally distributed populations, and do not assume that the population standard deviations are equal. (Note: Answers in Appendix D include technology answers based on Formula 9-1 along with “Table” answers based on Table A-3 with df equal to the smaller of n11 and n21.) BMI We know that the mean weight of men is greater than the mean weight of women, and the mean height...
Perform the indicated hypothesis test. Assume that the two samples are independent simple random samples selected...
Perform the indicated hypothesis test. Assume that the two samples are independent simple random samples selected from normally distributed populations. 1) A researcher was interested in comparing the amount of time spent watching television by women and by men. Independent simple random samples of 14 women and 17 men were selected, and each person was asked how many hours he or she had watched television during the previous week. The summary statistic are as follows. Women: xbar1= 12.2hr s1= 4.4...
Two random samples are selected from two independent populations. A summary of the samples sizes, sample...
Two random samples are selected from two independent populations. A summary of the samples sizes, sample means, and sample standard deviations is given below: n1=39,n2=40,x¯1=50.3,x¯2=73.8,s1=6s2=6.1 Find a 98% confidence interval for the difference μ1−μ2 of the population means, assuming equal population variances.
Two random samples are selected from two independent populations. A summary of the samples sizes, sample...
Two random samples are selected from two independent populations. A summary of the samples sizes, sample means, and sample standard deviations is given below: n1=41, n2=44, x¯1=52.3, x¯2=77.3, s1=6 s2=10.8 Find a 96.5% confidence interval for the difference μ1−μ2 of the means, assuming equal population variances. Confidence Interval =
Two random samples are selected from two independent populations. A summary of the samples sizes, sample...
Two random samples are selected from two independent populations. A summary of the samples sizes, sample means, and sample standard deviations is given below: n1=51,n2=36,x¯1=56.5,x¯2=75.3,s1=5.3s2=10.7n1=51,x¯1=56.5,s1=5.3n2=36,x¯2=75.3,s2=10.7 Find a 97.5% confidence interval for the difference μ1−μ2μ1−μ2 of the means, assuming equal population variances. Confidence Interval =
For all hypothesis tests: Assume all samples are simple random samples selected from normally distributed populations....
For all hypothesis tests: Assume all samples are simple random samples selected from normally distributed populations. If testing means of two independent samples, assume variances are unequal. For each test give the null and alternative hypothesis, p-value, and conclusion as it relates to the claim. In a random sample of 360 women, 65% favored stricter gun control laws. In a random sample of 220 men, 60% favored stricter gun control laws. Test the claim that the proportion of women favoring...
Test the indicated claim about the means of two populations. Assume that the two samples are...
Test the indicated claim about the means of two populations. Assume that the two samples are independent simple random samples selected from normally distributed populations. Do not assume that the population standard deviations are equal. Use the traditional method. 1) A researcher was interested in comparing the response times of two different cab companies. Companies A and B were each called at 50 randomly selected times. The calls to company A were made independently of the calls to company B....
Two random samples are selected from two independent populations. A summary of the samples sizes, sample...
Two random samples are selected from two independent populations. A summary of the samples sizes, sample means, and sample standard deviations is given below: n1=45,n2=40,x¯1=50.7,x¯2=71.9,s1=5.4s2=10.6 n 1 =45, x ¯ 1 =50.7, s 1 =5.4 n 2 =40, x ¯ 2 =71.9, s 2 =10.6 Find a 92.5% confidence interval for the difference μ1−μ2 μ 1 − μ 2 of the means, assuming equal population variances.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT