Question

If np greater than or equals 5 and nq greater than or equals 5, estimate Upper...

If np greater than or equals 5 and nq greater than or equals 5, estimate Upper P (more than 9 ) with n = 13 and p = 0.3 by using the normal distribution as an approximation to the binomial distribution; if np less than 5 or nq less than 5, then state that the normal approximation is not suitable.

Select the correct choice below​ and, if​ necessary, fill in the answer box to complete your choice.

A. P(more than 9) = ________

B. The normal distribution cant be used

Homework Answers

Answer #1

Solution

Given that ,

p = 0.3

1 - p = 1 - 0.3 = 0.7

n = 13

np = 0.3 * 13 = 3.9 < 5

nq = 0.7 * 13 = 9.1 > 5

the normal approximation is not suitable .

Using binomial probability formula ,

P(X = x) = ((n! / x! (n - x)!) * px * (1 - p)n - x

P(X > 9) = P(X = 10) + P(X = 11) + P(X = 12) + P(X = 13

= ((13! / 10! (3)!) * 0.310 * (0.7)3 + ((13! / 11! (2)!) * 0.311 * (0.7)2 +

((13! / 12! (1)!) * 0.311 * (0.7)1 + ((13! / 13! (0)!) * 0.313 * (0.7)0

=  0.00065

P(X > 9) = 0.00065

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
if np greater than or equals5 and nq greater than or equals ​5, estimate Upper P...
if np greater than or equals5 and nq greater than or equals ​5, estimate Upper P left parenthesis more than 9 right parentheses with n equals 11 and p equals 0.7 by using the normal distribution as an approximation to the binomial​ distribution; if np less than5 or nq less than​ 5, then state that the normal approximation is not suitable. Select the correct choice below​ and, if​ necessary, fill in the answer box to complete your choice. A. Upper...
If np greater than or equals 5 and nq greater than or equals 5, estimate Upper...
If np greater than or equals 5 and nq greater than or equals 5, estimate Upper (fewer than 5) with n =14 and p = 0.6 by using the normal distribution as an approximation to the binomial distribution; if np less than 5 or nqless than 5, then state that the normal approximation is not suitable. Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. P(fewer than 5) = ____ (Round...
If np greater than or equals 5 and nq greater than or equals 5​, estimate Upper...
If np greater than or equals 5 and nq greater than or equals 5​, estimate Upper P left parenthesis fewer than 6 right parenthesis with nequals14 and pequals0.5 by using the normal distribution as an approximation to the binomial​ distribution; if npless than5 or nqless than​5, then state that the normal approximation is not suitable. Select the correct choice below​ and, if​ necessary, fill in the answer box to complete your choice. A. Upper P left parenthesis fewer than 6...
f np greater than or equals 5 and nq greater than or equals 5?, estimate Upper...
f np greater than or equals 5 and nq greater than or equals 5?, estimate Upper P left parenthesis fewer than 5 right parenthesis with nequals13 and pequals0.6 by using the normal distribution as an approximation to the binomial? distribution; if npless than5 or nqless than?5, then state that the normal approximation is not suitable. Select the correct choice below? and, if? necessary, fill in the answer box to complete your choice. A. Upper P left parenthesis fewer than 5...
If np greater than or equals 5np≥5 and nq greater than or equals 5nq≥5​, estimate Upper...
If np greater than or equals 5np≥5 and nq greater than or equals 5nq≥5​, estimate Upper P left parenthesis fewer than 5 right parenthesisP(fewer than 5) with nequals=14 and pequals=0.4 by using the normal distribution as an approximation to the binomial​ distribution; if npless than<5 or nqless than<​5, then state that the normal approximation is not suitable. Select the correct choice below​ and, if​ necessary, fill in the answer box to complete your choice.
If np greater than or equals 5 and nq greater than or equals 5​, estimate Upper...
If np greater than or equals 5 and nq greater than or equals 5​, estimate Upper P left parenthesis fewer than 5 right parenthesis with n=13 and p=0.4 by using the normal distribution as an approximation to the binomial​ distribution; if np less than 5 or nq less than​5, then state that the normal approximation is not suitable.
If np greater than or equals 5np≥5 and nq greater than or equals 5nq≥5​, estimate Upper...
If np greater than or equals 5np≥5 and nq greater than or equals 5nq≥5​, estimate Upper P left parenthesis fewer than 4 right parenthesisP(fewer than 4) with nequals=1414 and pequals=0.40.4 by using the normal distribution as an approximation to the binomial​ distribution; if npless than<5 or nqless than<​5, then state that the normal approximation is not suitable. Select the correct choice below​ and, if​ necessary, fill in the answer box to complete your choice. A. Upper P left parenthesis fewer...
If np greater than or equals 5(np≥5) and nq greater than or equals 5(nq≥5​), estimate P(fewer...
If np greater than or equals 5(np≥5) and nq greater than or equals 5(nq≥5​), estimate P(fewer than 4) with nequals=13 and p equals=0.5 by using the normal distribution as an approximation to the binomial​ distribution; if np<5 or nq<​5, then state that the normal approximation is not suitable.
If np greater than or equals 5np≥5 and nq greater than or equals 5nq≥5​, estimate Upper...
If np greater than or equals 5np≥5 and nq greater than or equals 5nq≥5​, estimate Upper P left parenthesis fewer than 3 right parenthesisP(fewer than 3) with nequals=1313 and pequals=0.50.5 by using the normal distribution as an approximation to the binomial​ distribution; if npless than<5 or nqless than<​5, then state that the normal approximation is not suitable.
If np greater than or equals 5np≥5 and nq greater than or equals 5nq≥5 , estimate...
If np greater than or equals 5np≥5 and nq greater than or equals 5nq≥5 , estimate Upper P left parenthesis fewer than 2 right parenthesisP(fewer than 2) with nequals=13 and pequals=0.4by using the normal distribution as an approximation to the binomial distribution; if npless than<5 or nqless than< 5, then state that the normal approximation is not suitable.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT