A study of college soccer games revealed the correlation between the number of shots attempted and the number of goals scored to be 0.87 for a sample of 11 games.
a. State the decision rule for 0.01 significance level: H0: ρ ≤ 0; H1: ρ > 0 (Round the final answer to 3 decimal places.)
Reject H0 if t > ?
b. Compute the value of the test statistic. (Round the final answer to 3 decimal places.)
Value of the test statistic ?
c. What is the p-value? (Round the final answer to 4 decimal places.)
p-value is ?
Solution :
This is the two tailed test .
The null and alternative hypothesis is ,
H0 : 0
Ha : > 0
r = 0.87
n = 11
degrees of freedom = n - 2 = 11 - 2 = 9
Test statistic = t
=
= 0.87 * (9) / (1 - 0.872)
= 0.685
The null hypothesis is rejected , based on the sample correlation provided, we have
that r = 0.87 r c = 0.685 r = 0.87 > r c = 0.685, from which is concluded that the null hypothesis is rejected.
p-value = 0.2553
Get Answers For Free
Most questions answered within 1 hours.