Question

"Assume that there are four exams in a course and you think (before taking the exams)...

"Assume that there are four exams in a course and you think (before taking the exams) that your grade in each of the exams is a normal random variable with mean 60 and standard deviation 10. Assuming that the grades in different exams are independent, calculate the probability that you receive a grade higher than 90 in exactly one of these four exams. (Note: While making your calculations, keep your results with at least 4 decimal places in all steps. Furthermore, your final answer should include 4 decimal places.)"

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Assume that there are four exams in a course and you think (before taking the exams)...
Assume that there are four exams in a course and you think (before taking the exams) that your grade in each of the exams is a normal random variable with mean 57 and standard deviation 20. Assuming that the grades in different exams are independent, calculate the probability that you receive a grade higher than 55 in exactly one of these four exams. (Note: While making your calculations, keep your results with at least 4 decimal places in all steps....
A mean average of 80 or greater for five exams is needed for a final grade...
A mean average of 80 or greater for five exams is needed for a final grade of B in a course. Jorge's first four exam grades are 73, 69, 85, an 80. What grade does Jorge need on the fifth exam to get a B in the course? Must Jorge get exactly the grade you calculated? Can he receive a higher or lower grade and still get a B?
Suppose that you are taking a course. There are two midterms and a final exam. Each...
Suppose that you are taking a course. There are two midterms and a final exam. Each midterm impacts 25% of the course grade while final exam impacts 50% of the grade. The first and second midterm scores follow a normal distribution with mean 84 points and the standard deviation of 9 points and mean 85 points and the standard deviation of 6. Assume that the final exam is also normally distributed with mean 87 and standard deviation of 6 points....
The professor of a Statistics class has stated that, historically, the distribution of final exam grades...
The professor of a Statistics class has stated that, historically, the distribution of final exam grades in the course resemble a Normal distribution with a mean final exam mark of μ=60μ=60% and a standard deviation of σ=9σ=9%. (a) What is the probability that a random chosen final exam mark in this course will be at least 73%? Answer to four decimals. equation editor (b) In order to pass this course, a student must have a final exam mark of at...
1。James is taking a computer science course. The mark breakdown is as follows: • Midterm Exam...
1。James is taking a computer science course. The mark breakdown is as follows: • Midterm Exam 1 – 20% • Midterm Exam 2 – 30% • Final Exam – 50% All exams are out of 100 marks. James received scores of 70 on Midterm Exam 1 and 60 on Midterm Exam 2. To receive a final grade of B+ in the course, a student requires a final grade of 75% or higher. What is the minimum score James must get...
A set of final examination grades in an introductory statistics course is normally distributed, with a...
A set of final examination grades in an introductory statistics course is normally distributed, with a mean of 72 and a standard deviation of 9. a) What is the probability that a student scored below 89 on this exam? (Round to 4 decimal places as needed.) b) What is the probability that a student scored between 63 and 95? (Round to 4 decimal places ad needed.) c) The probability is 5% that a student taking the test scores higher than...
Question 1 1. A set of final examination grades in an introductory statistics course is normally...
Question 1 1. A set of final examination grades in an introductory statistics course is normally distributed with a mean of 85 and a standard deviation of 12. a) What is the probability of getting a grade of 95 on this exam? b) What is the probability that a student scored less than 55 and more than79? c) The probability is 8% that a student taking the test scores higher than than what grade? d) If the professor grades on...
uestion 1 1. A set of final examination grades in an introductory statistics course is normally...
uestion 1 1. A set of final examination grades in an introductory statistics course is normally distributed with a mean of 73 and a standard deviation of 8. a) What is the probability of getting a grade of 91or less on this exam? b) what is the probability that a student scored between 65 and 89? c) The probability is 5% that a student taking the test scores higher than than what grade? d) If the professor grades on a...
PROBLEM: A set of final examination grades in an introductory statistics course was found to be...
PROBLEM: A set of final examination grades in an introductory statistics course was found to be normally distributed with a mean of 73 and a standard deviation of 8. Use Excel to determine the following values to 6 (round up) decimal place accuracy. Fill in the following values. 1. Determine the probability of getting a grade that is less than 85.Answer____________________________________ 2. Determine the probability of getting a grade that is greater than 90.Answer__________________________________ 3. Determine the probability of getting...
Suppose your statistics instructor gave six examinations during the semester. You received the following exam scores...
Suppose your statistics instructor gave six examinations during the semester. You received the following exam scores (percent correct): 80, 74, 90, 93, 94, and 73. To compute your final course grade, the instructor decided to randomly select two exam scores, compute their mean, and use this score to determine your final course grade. Compute the population mean. This is your average grade based on all of your grades. (Round your answer to 2 decimal places.) Compute the population standard deviation....
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT