You wish to test the following claim (HaHa) at a significance
level of α=0.001α=0.001. For the context of this problem,
μd=μ2−μ1μd=μ2-μ1 where the first data set represents a pre-test and
the second data set represents a post-test.
Ho:μd=0Ho:μd=0
Ha:μd>0Ha:μd>0
You believe the population of difference scores is normally
distributed, but you do not know the standard deviation. You obtain
pre-test and post-test samples for n=22n=22 subjects. The average
difference (post - pre) is ¯d=25.6d¯=25.6 with a standard deviation
of the differences of sd=30.8sd=30.8.
What is the test statistic for this sample? (Report answer accurate
to three decimal places.)
test statistic =
What is the p-value for this sample? (Report answer accurate to
four decimal places.)
p-value =
The p-value is...
This test statistic leads to a decision to...
As such, the final conclusion is that...
The statistical software output for this problem is:
Hence,
Test statistic = 3.899
P - value = 0.0004
The p - value is less than (or equal to) α
This test statistic leads to a decision to reject the null
As such, the final conclusion is that the sample data support the claim that the mean difference of post-test from pre-test is greater than 0. Option C is correct.
Get Answers For Free
Most questions answered within 1 hours.