The data for a random sample of 8 paired observations are shown in the table to the right. a. What are the appropriate null and alternative hypotheses to test whether the mean for population 2 is larger than that for population 1? b. Conduct the test identified in part a using alphaαequals=0.100.10. c. Find a 9090% confidence interval for mu Subscript dμd. Interpret this result. d. What assumptions are necessary to ensure the validity of this analysis? Pair Population 1 Population 2 1 2222 2727 2 5757 6363 3 4545 4747 4 2929 3333 5 5151 5757 6 3838 3838 7 3939 4242 8 3232 3737
Ans:
population 1 | population 2 | d | |
1 | 22 | 27 | 5 |
2 | 57 | 63 | 6 |
3 | 45 | 47 | 2 |
4 | 29 | 33 | 4 |
5 | 51 | 57 | 6 |
6 | 38 | 38 | 0 |
7 | 39 | 42 | 3 |
8 | 32 | 37 | 5 |
d-bar= | 3.875 | ||
sd= | 2.100 |
b)
Test statistic:
t=(3.875-0)/(2.10/sqrt(8))
t=5.22
df=8-1=7
p-value=tdist(5.22,7,1)=0.0006
Reject the null hypothesis.
There is sufficient evidence to conclude that the mean for population 2 is larger than that for population 1.
c)
critical t value=tinv(0.1,7)=1.895
90% confidence interval for mean difference
=3.875+/-1.895*(2.1/sqrt(8)
=3.875+/-1.407
=(2.468, 5.282)
Get Answers For Free
Most questions answered within 1 hours.