Question

The statistical model for simple linear regression is written as μy = β0 + β1*x, where...

The statistical model for simple linear regression is written as μy = β0 + β1*x, where μy represents the mean of a Normally distributed response variable and x represents the explanatory variable. The parameters β0 and β1 are estimated, giving the linear regression model defined by μy = 70 + 10*x , with standard deviation σ = 5.

(multiple choice question)

What is the distribution of the test statistic used to test the null hypothesis H0 : β1 = 0 against the alternative hypothesis Ha : β1 > 0 ? (note: n is the sample size)

a.) N (0,1)

b.) N (0,2)

c.) t (n-1)

d.) t (n-2)

Homework Answers

Answer #1

To test

Ho : 1 = 0

H1 : 1 > 0

the test statistic is given by

where b1 is slope of equation

Sb1 : standard error of slope

1 : Hypothesized value of slope

here statistic t follows t distribution with (n-k-1) degrees of freedom

since we have one independent variable X, k =1

therefore  t follows t distribution with (n-2) degrees of freedom

option d t(n-2) is correct

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the multiple linear regression model y = β0 +β1x1 +β2x2 +β3x3 +β4x4 +ε Using the...
Consider the multiple linear regression model y = β0 +β1x1 +β2x2 +β3x3 +β4x4 +ε Using the procedure for testing a general linear hypothesis, show how to test a. H 0 : β 1 = β 2 = β 3 = β 4 = β b. H 0 : β 1 = β 2 , β 3 = β 4 c. H0: β1-2β2=4β3           β1+2β2=0
Denote Y for profit (in dollars) and X for price (in dollars). The linear regression model...
Denote Y for profit (in dollars) and X for price (in dollars). The linear regression model of Y on X is Yi= β0 + β1Xi + εi (i=1, 2, … n) for n pairs on Y and X. The hypothesis H0: β1=0 vs H1: β1≠0 at α=0.01. The fitted model through least squares techniques from a random sample of 81 is: = 0.75 - 1.15X. If H0 is accepted, the true statement (s) is/are for the regression model:        a....
1. Consider the following linear regression model which estimates only a constant: Yi = β1 +...
1. Consider the following linear regression model which estimates only a constant: Yi = β1 + ui What will the value of ˆβ1 be? Remember we are minimizing the sum of the squared residuals. 2. Consider the following regression model with K parameters: Yi = β1 + β2X2i + β3X3i + ... + βKXKi + ui Now consider the F-test of the null hypothesis that all slope parameters (β2,β3,...,βK) are equal to zero. Using the equation from class: F =((RSSk...
Consider the simple regression model yi = β0 + β1xi + ei,i = 1,...,n. The Gauss-Markov...
Consider the simple regression model yi = β0 + β1xi + ei,i = 1,...,n. The Gauss-Markov conditions hold and also ei ∼ N(0,σ). Suppose we center both the response variable and the predictor. Estimate the intercept and the slope of this model.
In any regression model, p denotes the number of explanatory variables in the model. In simple...
In any regression model, p denotes the number of explanatory variables in the model. In simple linear regression (SLR), p=1. True/False? When testing whether the slope of a explanatory variable is 0 or not in context of multiple regression, what distribution is used to determine the p-value? standard normal distribution / t distribution with n−1 degrees of freedom / t distribution with n−2 degrees of freedom / t distribution with n−p−1 degrees of freedom ? In multiple regression, there is...
The following table is the output of simple linear regression analysis. Note that in the lower...
The following table is the output of simple linear regression analysis. Note that in the lower right hand corner of the output we give (in parentheses) the number of observations, n, used to perform the regression analysis and the t statistic for testing H0: β1 = 0 versus Ha: β1 ≠ 0.   ANOVA df SS MS F Significance F   Regression 1     61,091.6455 61,091.6455 .69        .4259   Residual 10     886,599.2711 88,659.9271      Total 11     947,690.9167 (n = 12;...
Consider the following (generic) population regression model: Yi = β0 + β1X1,i + β2X2,i + β3X3,i...
Consider the following (generic) population regression model: Yi = β0 + β1X1,i + β2X2,i + β3X3,i + ui, i = 1,...,n . Transform the regression to allow you to easily test the null hypothesis that β1 + β3 = 1. State the new null hypothesis associated to this transformed regression.
7) Consider the following regression model Yi = β0 + β1X1i + β2X2i + β3X3i + ...
7) Consider the following regression model Yi = β0 + β1X1i + β2X2i + β3X3i + β4X4i + β5X5i + ui This model has been estimated by OLS. The Gretl output is below. Model 1: OLS, using observations 1-52 coefficient std. error t-ratio p-value const -0.5186 0.8624 -0.6013 0.5506 X1 0.1497 0.4125 0.3630 0.7182 X2 -0.2710 0.1714 -1.5808 0.1208 X3 0.1809 0.6028 0.3001 0.7654 X4 0.4574 0.2729 1.6757 0.1006 X5 2.4438 0.1781 13.7200 0.0000 Mean dependent var 1.3617 S.D. dependent...
Consider a linear regression model where y represents the response variable, x is a quantitative explanatory...
Consider a linear regression model where y represents the response variable, x is a quantitative explanatory variable, and d is a dummy variable. The model is estimated as  yˆy^  = 15.4 + 3.6x − 4.4d. a. Interpret the dummy variable coefficient. Intercept shifts down by 4.4 units as d changes from 0 to 1. Slope shifts down by 4.4 units as d changes from 0 to 1. Intercept shifts up by 4.4 units as d changes from 0 to 1. Slope shifts...
Consider the following (generic) population regression model: Yi = β0 + β1X1,i + β2X2,i + β3X3,i...
Consider the following (generic) population regression model: Yi = β0 + β1X1,i + β2X2,i + β3X3,i + ui, i = 1, ..., n (∗) Transform the regression to allow you to easily test the null hypothesis that β1 + β3 = 1. State the new null hypothesis associated to this transformed regression. Would you expect to reject or accept the null hypothesis? Why?