1) P(-0.64<Z<0.64)=P(Z>-0.64)-P(Z>0.64)
=1-P(Z<-0.64)-P(Z>0.64)
=1-P(Z>0.64)-P(Z>0.64)
=1-2*P(Z>0.64)
=1-2*0.26109
=0.4778
2) P(-0.66<Z<0)=P(Z>-0.66)-P(Z>0)
=1-P(Z<-0.66)-P(Z>0)
=1-P(Z>0.66)-P(Z>0)
=1-0.25463-0.5
=0.2454
3) P(-2.14<Z<-0.74)=P(Z>-2.14)-P(Z>-0.74)
=[1-P(Z<-2.14)]-[1-P(Z<-0.74)]
=1-P(Z>2.14)-1+P(Z>0.74)
=P(Z>0.74)-P(Z>2.14)
=0.22965-0.016177
=0.2135
4) Let , P(-a<Z<a)=0.66
From normal probability table ,
a=0.95
Therefore , the Z-scores -0.95 and 0.95 that separate the middle 66% of the distribution from the area in the tails of the standard normal distribution.
Get Answers For Free
Most questions answered within 1 hours.