Question

A local company makes snack-size bags of potato chips. The company produces batches of 400 snack-size...

A local company makes snack-size bags of potato chips. The company produces batches of 400 snack-size bags using a process designed to fill each bag with an average of 2 ounces of potato chips. However, due to imperfect technology, the actual amount placed in a given bag varies. Assume the population of filling weights is normally distributed with a standard deviation of 0.1 ounce. The company periodically weighs samples of 10 bags to ensure the proper filling process. The last five sample means, in ounces, were 1.99, 2.02, 2.07, 1.96, and 2.01. Is the production process under control?

  • Yes, because the sample means show a downward trend.

  • No, because the sample means fall within the upper and lower control limits.

  • No, because the sample means show a downward trend.

  • Yes, because the sample means fall within the upper and lower control limits.

Homework Answers

Answer #1

To answer this question, we need to find the upper and lower control limits

it is given that mean = 2, population standard deviation = 0.1 and sample size is n = 5

So, sample standard deviation = SD/sqrt{n}

where SD=0.1 and n = 5

this implies

sample standard deviation = 0.1/sqrt{5} = 0.04

Upper control limit = mean + 3(sample standard deviation)

= 2 + (3*0.04)

=2.12

and

lower control limit = mean - 3(sample standard deviation)

= 2 - (3*0.04)

=1.88

it is clear that none of the 5 sample values are outside these control limits

Therefore, we can say that the sample means fall within the upper and lower control limits

option D is correct

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Question #11: A manufacturer makes bags of popcorn and bags of potato chips. The average weight...
Question #11: A manufacturer makes bags of popcorn and bags of potato chips. The average weight of a bag of popcorn is supposed to be 3.06 ounces with an allowable deviation of 0.03 ounces. The average weight of a bag of potato chips is supposed to be 5.08 ounces with an allowable deviation of 0.05 ounces. A factory worker randomly selects a bag of popcorn from the assembly line and it has a weight of 3.02 ounces. Then the worker...
A company that produces snack foods uses a machine to package 454 grams bags of potato...
A company that produces snack foods uses a machine to package 454 grams bags of potato chips. A random sample of 75 bags of potato chips has a mean of 450 grams and standard deviation of 8.48 grams. Perform a hypothesis test at the 1% significance level to determine if the machine is working properly.
Bags of chips are filled using a machine. Because not all chips are the same size,...
Bags of chips are filled using a machine. Because not all chips are the same size, it is impossible to get the exact target weight in each bag. The target weight is 75 g. Based on samples of size 4, the average standard deviation is about 0.5 g,and the average weight of the last batch of four bags was 76 g. Which of the following are the upper and lower control limits for an x control chart? A) (73.5, 76.5)...
Crispy-Snax is a popular brand of potato chip. The company sells a Halloween sized snack bag...
Crispy-Snax is a popular brand of potato chip. The company sells a Halloween sized snack bag of chips. These snack bags are intended to contain 24g of potato chips. The company want to verify that the packaging and labelling is correct and that the bags do not contain less than 24g. Company scientists take a sample of 12 bags and find the sample mean to be 23.1g. Assuming that the standard deviation of the bag filling is 0.5g, do a...
Bags of a certain brand of potato chips say that the net weight of the contents...
Bags of a certain brand of potato chips say that the net weight of the contents is 35.6 grams. Assume that the standard deviation of the individual bag weights is 5.2 grams. A quality control engineer selects a random sample of 100 bags. The mean weight of these 100 bags turns out to be 33.6 grams. Use this information to answer the questions below. 1. We can use a normal probability model to represent the distribution of sample means for...
A manufacturing process produces steel rods in batches of 2,200. The firm believes that the percent...
A manufacturing process produces steel rods in batches of 2,200. The firm believes that the percent of defective items generated by this process is 4.3%. a. Calculate the centerline, the upper control limit (UCL), and the lower control limit (LCL) for the p¯p¯ chart. (Round your answers to 3 decimal places.) centerline- Upper control limit- Lower control limit- b. An engineer inspects the next batch of 2,200 steel rods and finds that 5.5% are defective. Is the manufacturing process under...
. A consumer believes that a certain potato chip maker is putting fewer chips in their...
. A consumer believes that a certain potato chip maker is putting fewer chips in their regular bags of chips than the advertised amount of 12 ounces. In order to test the null hypothesis that the average chip weight is 12 ounces per bag vs. the alternative hypothesis that the average chip weight is less than 12 ounces per bag, a random sample of 38 bags were selected. The resulting data produced a p - value of 0.055. (a) At...
1.The weight of potato chip bags marketed as 16-ounce bags follows a distribution that has a...
1.The weight of potato chip bags marketed as 16-ounce bags follows a distribution that has a mean of 17.0 ounces and a standard deviation of 1.0 ounces. Suppose a sample of 100 of these bags of potato chips has been randomly sampled. The mean weight of the 100 bags would be considered a ____________________ and the mean weight of all bags would be considered a __________________. statistic; statistic parameter; parameter parameter; statistic statistic; parameter 2. Suppose we repeatedly sampled from...
Twelve​ samples, each containing five​ parts, were taken from a process that produces steel rods at...
Twelve​ samples, each containing five​ parts, were taken from a process that produces steel rods at Emmanual​ Kodzi's factory. The length of each rod in the samples was determined. The results were tabulated and sample means and ranges were computed. Refer to Table S6.1 - Factors for computing control chart limits (3 sigma) for this problem. Sample ​Size, n Mean​ Factor, A2 Upper​ Range, D4 Lower​ Range, D3 2 1.880 3.268 0 3 1.023 2.574 0 4 0.729 2.282 0...
BridgeRock is a major manufacturer of tires in the U.S.. The company had five manufacturing facilities...
BridgeRock is a major manufacturer of tires in the U.S.. The company had five manufacturing facilities where tires were made and another 20 facilities for various components and materials used in tires. Each manufacturing facility produced 10,000 tires every hour. Quality had always been emphasized at BridgeRock, but lately quality was a bigger issue because of recent fatal accidents involving tires made by other manufacturers due to tread separation. All tire manufacturers were under pressure to ensure problems did not...