Question

The following table contains information on matched sample values whose differences are normally distributed. Use Table...

The following table contains information on matched sample values whose differences are normally distributed. Use Table 2. Number Sample 1 Sample 2 1 16 20 2 11 13 3 23 22 4 21 20 5 18 21 6 15 18 7 18 19 8 17 22 a. Construct the 99% confidence interval for the mean difference μD. (Negative values should be indicated by a minus sign. Round all intermediate calculations to at least 4 decimal places. Round your answers to 2 decimal places.) Confidence interval is to b. Specify the competing hypotheses in order to test whether the mean difference differs from zero. H0: μD ≥ 0; HA: μD < 0 H0: μD = 0; HA: μD ≠ 0 H0: μD ≤ 0; HA: μD > 0 c. Using the confidence interval from part a, are you able to reject H0? Yes No

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
10-10. The following table contains information on matched sample values whose differences are normally distributed. (You...
10-10. The following table contains information on matched sample values whose differences are normally distributed. (You may find it useful to reference the appropriate table: z table or t table) Number Sample 1 Sample 2 1 18 22 2 13 11 3 22 23 4 23 20 5 17 21 6 14 16 7 18 18 8 19 20 a. Construct the 99% confidence interval for the mean difference μD. (Negative values should be indicated by a minus sign. Round...
Consider the following data drawn independently from normally distributed populations: (You may find it useful to...
Consider the following data drawn independently from normally distributed populations: (You may find it useful to reference the appropriate table: z table or t table) x−1x−1 = 34.4 x−2x−2 = 26.4 σ12 = 89.5 σ22 = 95.8 n1 = 21 n2 = 23 a. Construct the 90% confidence interval for the difference between the population means. (Negative values should be indicated by a minus sign. Round all intermediate calculations to at least 4 decimal places and final answers to 2...
Consider the following data drawn independently from normally distributed populations: x1 = 34.4 x2 = 26.4...
Consider the following data drawn independently from normally distributed populations: x1 = 34.4 x2 = 26.4 σ12 = 89.5 σ22 = 95.8 n1 = 21 n2 = 23 a. Construct the 90% confidence interval for the difference between the population means. (Negative values should be indicated by a minus sign. Round all intermediate calculations to at least 4 decimal places and final answers to 2 decimal places.) Confidence interval is__________ to__________. b. Specify the competing hypotheses in order to determine...
Consider the following data drawn independently from normally distributed populations: (You may find it useful to...
Consider the following data drawn independently from normally distributed populations: (You may find it useful to reference the appropriate table: z table or t table) x−1x−1 = 29.8 x−2x−2 = 32.4 σ12 = 95.3 σ22 = 91.6 n1 = 34 n2 = 29 a. Construct the 99% confidence interval for the difference between the population means. (Negative values should be indicated by a minus sign. Round all intermediate calculations to at least 4 decimal places and final answers to 2...
Consider the following data drawn independently from normally distributed populations: (You may find it useful to...
Consider the following data drawn independently from normally distributed populations: (You may find it useful to reference the appropriate table: z table or t table) x−1x−1 = 28.5 x−2x−2 = 29.8 σ12 = 96.9 σ22 = 87.0 n1 = 29 n2 = 25 a. Construct the 99% confidence interval for the difference between the population means. (Negative values should be indicated by a minus sign. Round all intermediate calculations to at least 4 decimal places and final answers to 2...
A sample of 20 paired observations generates the following data: d− = 1.3 and s2D =...
A sample of 20 paired observations generates the following data: d− = 1.3 and s2D = 2.6. Assume a normal distribution. (You may find it useful to reference the appropriate table: z table or t table) a. Construct the 90% confidence interval for the mean difference μD. (Round intermediate calculations to at least 4 decimal places and final answers to 2 decimal places.) b. Using the confidence interval, test whether the mean difference differs from zero. There is evidence that...
A sample of 20 paired observations generates the following data: d−d− = 1.3 and s2DsD2 =...
A sample of 20 paired observations generates the following data: d−d− = 1.3 and s2DsD2 = 2.6. Assume a normal distribution. Use Table 2. a. Construct a 90% confidence interval for the mean difference μD. (Round intermediate calculations to 4 decimal places and final answers to 2 decimal places.)   Confidence interval is  to . b. Using the confidence interval, test whether the mean difference differs from zero. The mean difference does not differ from zero. The mean difference differs from zero.
Suppose a sample of 49 paired differences that have been randomly selected from a normally distributed...
Suppose a sample of 49 paired differences that have been randomly selected from a normally distributed population of paired differences yields a sample mean of d⎯⎯=5.9 and a sample standard deviation of sd = 7.4. (a) Calculate a 95 percent confidence interval for µd = µ1 – µ2. Can we be 95 percent confident that the difference between µ1 and µ2 is greater than 0? (Round your answers to 2 decimal places.) Confidence interval = [ , ] ; (b)...
Suppose a sample of 49 paired differences that have been randomly selected from a normally distributed...
Suppose a sample of 49 paired differences that have been randomly selected from a normally distributed population of paired differences yields a sample mean d⎯⎯ =5.7 of and a sample standard deviation of sd = 7.4. (a) Calculate a 95 percent confidence interval for µd = µ1 – µ2. Can we be 95 percent confident that the difference between µ1 and µ2 is greater than 0? (Round your answers to 2 decimal places.) Confidence interval = [ , ] ;...
10-9. A sample of 20 paired observations generates the following data: d−d− = 1.3 and s2DsD2...
10-9. A sample of 20 paired observations generates the following data: d−d− = 1.3 and s2DsD2 = 2.6. Assume a normal distribution. (You may find it useful to reference the appropriate table: z table or t table) a. Construct the 99% confidence interval for the mean difference μD. (Round intermediate calculations to at least 4 decimal places and final answers to 2 decimal places.) Confidence interval is______ to______. b. Using the confidence interval, test whether the mean difference differs from...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT