Question

You want to construct a multiple linear regression model. The dependent variable is Y and independent...

You want to construct a multiple linear regression model. The dependent variable is Y and independent variables are x1 and x2. The samples and STATA outputs are provided:

Y X1 X2
3 2 1
4 1 2
6 3 3
6 3 4
7 4

5

STATA

Y Coef. Std. Err. t P> abs. value (t) 95% confidence interval
X1 0.25 0.4677072 0.53 0.646 -1.762382 , 2.262382
X2 0.85 0.3372684 2.52 0.128 -.601149 , 2.301149
_cons 2 0.7245688 2.76 0.110 -1.117568 , 5.117568

A) Calculate the SST, SSE and SSR

B) Draw the ANOVA table below

C) Calculate S2 , R2 , and adjusted R2

I really appreciate the help!

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
You want to construct a multiple linear regression model. The dependent variable is Y and independent...
You want to construct a multiple linear regression model. The dependent variable is Y and independent variables are x1 and x2. The samples and STATA outputs are provided: Y X1 X2 3 2 1 4 1 2 6 3 3 6 3 4 7 4 5 STATA Y Coef. Std. Err. t P> abs. value (t) 95% confidence interval X1 0.25 0.4677072 0.53 0.646 -1.762382 , 2.262382 X2 0.85 0.3372684 2.52 0.128 -.601149 , 2.301149 _cons 2 0.7245688 2.76 0.110...
You want to construct a multiple linear regression model. The dependent variable is Y and independent...
You want to construct a multiple linear regression model. The dependent variable is Y and independent variables are x1 and x2. The samples and STATA outputs are provided: How would you make an ANOVA from the following information? Y X1 X2 3 2 1 4 1 2 6 3 3 6 3 4 7 4 5 STATA Y Coef. Std. Err. t P> abs. value (t) 95% confidence interval X1 0.25 0.4677072 0.53 0.646 -1.762382 , 2.262382 X2 0.85 0.3372684...
8. Consider the following data for a dependent variable y and two independent variables, x1 and...
8. Consider the following data for a dependent variable y and two independent variables, x1 and x2. x1 x2 y 30 12 94 47 10 108 25 17 112 51 16 178 40 5 94 51 19 175 74 7 170 36 12 117 59 13 142 76 16 211 (a) Develop an estimated regression equation relating y to x1. (Round your numerical values to one decimal place.) ŷ = ______   Predict y if x1 = 51. (Round your answer...
The estimated regression equation for a model involving two independent variables and 55 observations is: y-hat...
The estimated regression equation for a model involving two independent variables and 55 observations is: y-hat = 55.17 + 1.1X1 - 0.153X2 Other statistics produced for analysis include: SSR = 12370.8 SST = 35963.0 Sb1 = 0.33 Sb2 = 0.20 Interpret b1 and b2 in this estimated regression equation b. Predict y when X1 = 55 and X2 = 70. Compute R-square and Adjusted R-Square. e. Compute MSR and MSE. f. Compute F and use it to test whether the...
Multiple linear regression results: Dependent Variable: Cost Independent Variable(s): Summated Rating Cost = -43.111788 + 1.468875...
Multiple linear regression results: Dependent Variable: Cost Independent Variable(s): Summated Rating Cost = -43.111788 + 1.468875 Summated Rating Parameter estimates: Parameter Estimate Std. Err. Alternative DF T-Stat P-value Intercept -43.111788 10.56402 ≠ 0 98 -4.0810021 <0.0001 Summated Rating 1.468875 0.17012937 ≠ 0 98 8.633871 <0.0001 Analysis of variance table for multiple regression model: Source DF SS MS F-stat P-value Model 1 8126.7714 8126.7714 74.543729 <0.0001 Error 98 10683.979 109.02019 Total 99 18810.75 Summary of fit: Root MSE: 10.441273 R-squared: 0.432...
1.    In a multiple regression model, the following coefficients were obtained: b0 = -10      b1 =...
1.    In a multiple regression model, the following coefficients were obtained: b0 = -10      b1 = 4.5     b2 = -6.0 a.    Write the equation of the estimated multiple regression model. (3 pts) b     Suppose a sample of 25 observations produces this result, SSE = 480. What is the estimated standard error of the estimate? (5 pts) 2.    Consider the following estimated sample regression equation: Y = 12 + 6X1 -- 3 X2 Determine which of the following statements are true,...
Part C: Regression and Correlation Analysis Use the dependent variable (labeled Y) and the independent variables...
Part C: Regression and Correlation Analysis Use the dependent variable (labeled Y) and the independent variables (labeled X1, X2, and X3) in the data file. Use Excel to perform the regression and correlation analysis to answer the following. Generate a scatterplot for the specified dependent variable (Y) and the X1 independent variable, including the graph of the "best fit" line. Interpret. Determine the equation of the "best fit" line, which describes the relationship between the dependent variable and the selected...
1.A real estate analyst has developed a multiple regression line, y = 60 + 0.068 x1...
1.A real estate analyst has developed a multiple regression line, y = 60 + 0.068 x1 – 2.5 x2, to predict y = the market price of a home (in $1,000s), using two independent variables, x1 = the total number of square feet of living space, and x2 = the age of the house in years. With this regression model, the predicted price of a 10-year old home with 2,500 square feet of living area is __________. $205.00 $255,000.00 $200,000.00...
Use the dependent variable (labeled Y) and the independent variables (labeled X1, X2, and X3) in...
Use the dependent variable (labeled Y) and the independent variables (labeled X1, X2, and X3) in the data file. Use Excel to perform the regression and correlation analysis to answer the following. Generate a scatterplot for the specified dependent variable (Y) and the X1 independent variable, including the graph of the "best fit" line. Interpret. Determine the equation of the "best fit" line, which describes the relationship between the dependent variable and the selected independent variable. Determine the coefficient of...
Given here are data for a dependent variable and four potential predictors. y x1 x2 x3...
Given here are data for a dependent variable and four potential predictors. y x1 x2 x3 x4 x5 96 8 60 2.4 48 51 73 6 64 2.1 42 43 108 2 76 1.8 34 20 124 5 74 2.2 11 14 82 6 50 1.5 61 29 89 9 57 1.6 53 22 76 1 72 2 72 38 109 3 74 2.8 36 40 123 2 99 2.6 17 50 125 6 81 2.5 48 55 101 2...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT