Situación 1: Suponga que 12 ventiladores de alta eficiencia son fabricadas por cierto manufacturero que alega que éstos duran un promedio de 21,100 horas con una desviación estándar de 1,293 horas. Pruebe la hipótesis nula horas contra la hipótesis nula que horas a un nivel de significancia de 0.01.
Translation:
Suppose 12 high-efficiency fans are manufactured by a certain manufacturer who claims that they last an average of 21,100 hours with a standard deviation of 1,293 hours. Test the null hypothesis μ = 22,000 hours against the null hypothesis that μ = 22,000 hours at a significance level of 0.01.
Situation 2: En un estudio sobre la efectividad de ciertos ejercicios para reducir el peso, un grupo de 16 personas se matricularon en esos ejercicios durante un mes. Los resultados aparecen en la siguiente tabla.
Translation:
In a study on the effectiveness of certain exercises to reduce
weight, a group of 16 people enrolled in those exercises for a
month. The results appear in the following table.
weight before | weight after |
---|---|
211 | 198 |
180 | 173 |
171 | 172 |
214 | 209 |
182 | 179 |
194 | 192 |
162 | 159 |
182 | 182 |
172 | 166 |
156 | 154 |
185 | 181 |
167 | 164 |
203 | 201 |
183 | 175 |
245 | 230 |
146 | 142 |
Utilice un nivel alfa de 0.01. Determine si los ejercicios son efectivos para reducir el peso.
Translation:
Use an alpha level of 0.01. Determine if the exercises are effective in reducing weight.
Answer Sheet format
Situation #1 |
Data |
Hyphothesis Ho: Ha: |
Mathematical Model: |
Decision: |
Conclusion: |
The hypothesis being tested is:
H0: µd = 0
Ha: µd > 0
weight before | weight after | Difference |
211 | 198 | 13 |
180 | 173 | 7 |
171 | 172 | -1 |
214 | 209 | 5 |
182 | 179 | 3 |
194 | 192 | 2 |
162 | 159 | 3 |
182 | 182 | 0 |
172 | 166 | 6 |
156 | 154 | 2 |
185 | 181 | 4 |
167 | 164 | 3 |
203 | 201 | 2 |
183 | 175 | 8 |
245 | 230 | 15 |
146 | 142 | 4 |
184.563 | mean weight before | |
179.813 | mean weight after | |
4.750 | mean difference (weight before - weight after) | |
4.313 | std. dev. | |
1.078 | std. error | |
16 | n | |
15 | df | |
4.406 | t | |
.0003 | p-value (one-tailed, upper) |
The p-value is 0.0003.
Since the p-value (0.0003) is less than the significance level (0.05), we can reject the null hypothesis.
Therefore, we can conclude that the exercises are effective in reducing weight.
Please give me a thumbs-up if this helps you out. Thank you!
Get Answers For Free
Most questions answered within 1 hours.