Question

Let X1, X2, X3 be independent random variables, uniformly distributed on [0,1]. Let Y be the...

Let X1, X2, X3 be independent random variables, uniformly distributed on [0,1]. Let Y be the median of X1, X2, X3 (that is the middle of the three values). Find the conditional CDF of X1, given the event Y = 1/2. Under this conditional distribution, is X1 continuous? Discrete?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let X1, X2 , X3 be independent random variables that represent lifetimes (in hours) of three...
Let X1, X2 , X3 be independent random variables that represent lifetimes (in hours) of three key components of a device. Say their respective distributions are exponential with means 1000, 1500, and 1800. Let Y be the minimum of X1, X2, X3 and compute P(Y > 1000).
You are given that X1 and X2 are two independent and identically distributed random variables with...
You are given that X1 and X2 are two independent and identically distributed random variables with a Poisson distribution with mean 2. Let Y = max{X1, X2}. Find P(Y = 1).
Consider n independent variables, {X1, X2, . . . , Xn} uniformly distributed over the unit...
Consider n independent variables, {X1, X2, . . . , Xn} uniformly distributed over the unit interval, (0, 1). Introduce two new random variables, M = max (X1, X2, . . . , Xn) and N = min (X1, X2, . . . , Xn). (A) Find the joint distribution of a pair (M, N). (B) Derive the CDF and density for M. (C) Derive the CDF and density for N. (D) Find moments of first and second order for...
Let X1, X2, X3, and X4 be mutually independent random variables from the same distribution. Let...
Let X1, X2, X3, and X4 be mutually independent random variables from the same distribution. Let S = X1 + X2 + X3 + X4. Suppose we know that S is a Chi-Square random variable with 2 degrees of freedom. What is the distribution of each of the Xi?
Suppose X1, X2, X3, and X4 are independent and identically distributed random variables with mean 10...
Suppose X1, X2, X3, and X4 are independent and identically distributed random variables with mean 10 and variance 16. in addition, Suppose that Y1, Y2, Y3, Y4, and Y5are independent and identically distributed random variables with mean 15 and variance 25. Suppose further that X1, X2, X3, and X4 and Y1, Y2, Y3, Y4, and Y5are independent. Find Cov[bar{X} + bar{Y} + 10, 2bar{X} - bar{Y}], where bar{X} is the sample mean of X1, X2, X3, and X4 and bar{Y}...
Suppose X1 and X2 are independent expon(λ) random variables. Let Y = min(X1, X2) and Z...
Suppose X1 and X2 are independent expon(λ) random variables. Let Y = min(X1, X2) and Z = max(X1, X2). (a) Show that Y ∼ expon(2λ) (b) Find E(Y ) and E(Z). (c) Find the conditional density fZ|Y (z|y). (d) FindP(Z>2Y).
Let x1, x2 x3 ....be a sequence of independent and identically distributed random variables, each having...
Let x1, x2 x3 ....be a sequence of independent and identically distributed random variables, each having finite mean E[xi] and variance Var(xi). a)calculate the var (x1+x2) b)calculate the var(E[xi]) c) if n-> infinite, what is Var(E[xi])?
Suppose that X1, X2, . . . , Xn are independent identically distributed random variables with...
Suppose that X1, X2, . . . , Xn are independent identically distributed random variables with variance σ2. Let Y1 = X2 +X3 , Y2 = X1 +X3 and Y3 = X1 + X2. Find the following : (in terms of σ2) (a) Var(Y1) (b) cov(Y1 , Y2 ) (c) cov(X1 , Y1 ) (d) Var[(Y1 + Y2 + Y3)/2]
Let Y be the liner combination of the independent random variables X1 and X2 where Y...
Let Y be the liner combination of the independent random variables X1 and X2 where Y = X1 -2X2 suppose X1 is normally distributed with mean 1 and standard devation 2 also suppose the X2 is normally distributed with mean 0 also standard devation 1 find P(Y>=1) ?
Let X1 and X2 be independent random variables such that X1 ∼ P oisson(λ1) and X2...
Let X1 and X2 be independent random variables such that X1 ∼ P oisson(λ1) and X2 ∼ P oisson(λ2). Find the distribution of Y = X1 + X2.s