Question

6. The expected mean of a normal population is 100, and its standard deviation is 12....

6. The expected mean of a normal population is 100, and its standard deviation is 12. A sample of 49 measurements gives a sample mean of 96. Using the α = 0.01 level of significance a test is to be made to decide between “population mean is 100” or “population mean is different than 100.” a) State null H0. b) What conclusion can be drawn at the given level of significance α = 0.01. c) What conclusion can be drawn if α = 0.05? d) What is the p-value of the test? e) State the type I and II errors. f) What is probability of type II error when, if mean μ really is 102 and α = 0.05 ?

Homework Answers

Answer #1

Answer)

A)

Null hypothesis Ho : u = 100

Alternate hypothesis Ha : u not equal to 100

As the population s.d is known here we can use standard normal z table to conduct the test.

Test statistics z = (sample mean - claimed mean)/(s d/√n)

Z = (96-100)/(12/√49) = -2.33

From z table, P(z<-2.33) = 0.0099

As the test is two tailed.

P-value = 2*0.0099 = 0.0198

B)

Since p-value is greater than the given significance 0.01.

Here we fail to reject the null hypothesis Ho.

We do not have enough evidence to conclude that mean is different from 100.

C)

Since p-value is less than the given significance 0.05.

Reject Ho

We have enough evidence to conclude that mean is different from 100.

D)

0.0198.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
6.The expected mean of a normal population is 100, and its standard deviation is 12. A...
6.The expected mean of a normal population is 100, and its standard deviation is 12. A sample of 49 measurements gives a sample mean of 96. Using the α = 0.01 level of significance a test is to be made to decide between “population mean is 100” or “population mean is different than 100.” a) State null H0. b) What conclusion can be drawn at the given level of significance α = 0.01. c) What conclusion can be drawn if...
.6 The expected mean of a normal population is 100, and its standard deviation is 12....
.6 The expected mean of a normal population is 100, and its standard deviation is 12. A sample of 49 measurements gives a sample mean of 96. Using the α = 0.01 level of significance a test is to be made to decide between “population mean is 100” or “population mean is different than 100.” a) State null H0. b) What conclusion can be drawn at the given level of significance α = 0.01. c) What conclusion can be drawn...
IQ scores follow a Normal distribution with a mean μ = 100 and standard deviation σ...
IQ scores follow a Normal distribution with a mean μ = 100 and standard deviation σ = 15. A SRS of 31 seventh-grade girls in one school district is tested and the sample mean x¯¯¯x¯ was = 102 . Is there evidence that the mean IQ score in this district is different from from 100? The alternative hypothesis is: Ha: u < 100 Ha: u > 100 Ha: u ≠ 100 The test statistic, z =....... (+ 0.01) P(z )...
A normal population has mean "µ" and standard deviation 12. The hypotheses to be tested are...
A normal population has mean "µ" and standard deviation 12. The hypotheses to be tested are H0: µ = 40 versus H1: µ > 40. Which would result in the highest probability of a Type II error? µ = 42; n = 100 µ = 42; n = 10 µ = 41; n = 100 µ = 41; n = 10 µ = 40.9; n = 15 If a random sample has 100 observations, the true population mean is 42,...
A sample of size 81 is taken from a population with unknown mean and standard deviation...
A sample of size 81 is taken from a population with unknown mean and standard deviation 4.5.   In a test of H0: μ = 5 vs. Ha: μ < 5, if the sample mean was 4, which of the following is true? (i) We would reject the null hypothesis at α = 0.01. (ii) We would reject the null hypothesis at α = 0.05. (iii) We would reject the null hypothesis at α = 0.10. only (i)   only (iii)   both...
A random sample of 49 measurements from a population with population standard deviation σ1 = 5...
A random sample of 49 measurements from a population with population standard deviation σ1 = 5 had a sample mean of x1 = 9. An independent random sample of 64 measurements from a second population with population standard deviation σ2 = 6 had a sample mean of x2 = 12. Test the claim that the population means are different. Use level of significance 0.01. (a) Compute the corresponding sample distribution value. (Test the difference μ1 − μ2. Round your answer...
In order to conduct a hypothesis test for the population mean, a random sample of 24...
In order to conduct a hypothesis test for the population mean, a random sample of 24 observations is drawn from a normally distributed population. The resulting sample mean and sample standard deviation are calculated as 4.8 and 0.8, respectively. (You may find it useful to reference the appropriate table: z table or t table) H0: μ ≤ 4.5 against HA: μ > 4.5 a-1. Calculate the value of the test statistic. (Round all intermediate calculations to at least 4 decimal...
A random sample of n1 = 49 measurements from a population with population standard deviation σ1...
A random sample of n1 = 49 measurements from a population with population standard deviation σ1 = 5 had a sample mean of x1 = 8. An independent random sample of n2 = 64 measurements from a second population with population standard deviation σ2 = 6 had a sample mean of x2 = 11. Test the claim that the population means are different. Use level of significance 0.01.(a) Check Requirements: What distribution does the sample test statistic follow? Explain. The...
A random sample of n1 = 49 measurements from a population with population standard deviation σ1...
A random sample of n1 = 49 measurements from a population with population standard deviation σ1 = 3 had a sample mean of x1 = 13. An independent random sample of n2 = 64 measurements from a second population with population standard deviation σ2 = 4 had a sample mean of x2 = 15. Test the claim that the population means are different. Use level of significance 0.01. (a) Check Requirements: What distribution does the sample test statistic follow? Explain....
A random sample of n1 = 49 measurements from a population with population standard deviation σ1...
A random sample of n1 = 49 measurements from a population with population standard deviation σ1 = 5 had a sample mean of x1 = 11. An independent random sample of n2 = 64 measurements from a second population with population standard deviation σ2 = 6 had a sample mean of x2 = 14. Test the claim that the population means are different. Use level of significance 0.01. (a) Check Requirements: What distribution does the sample test statistic follow? Explain....