A group of researchers want to determine if incidents of drunk driving are equally likely to occur on different days of the week (fe = 0.143). They collect data on drunk driving arrests and calculate frequencies for each day of the week. They collected data from 406 incidents overall. They observed the following frequencies: Sunday (24), Monday (59), Tuesday (46), Wednesday (37), Thursday (50), Friday (92), Saturday (98). Use a one-variable chi-square analysis (where α = .001) to determine if there are significant differences in drunk driving arrests by day of the week.
4. List your χ2 test statistic
5. List your critical χ2 value(s)
6. Are there statistically significant differences in drunk driving arrests by day of the week? (Yes/No)
Ans:
Observed(fo) | Expected(fe) | (fo-fe)^2/fe | |
Sunday | 24 | 58 | 19.931 |
Monday | 59 | 58 | 0.017 |
Tuesday | 46 | 58 | 2.483 |
Wednesday | 37 | 58 | 7.603 |
Thursday | 50 | 58 | 1.103 |
Friday | 92 | 58 | 19.931 |
Saturday | 98 | 58 | 27.586 |
Total | 406 | 406 | 78.655 |
4)Test statistic:
Chi square=78.655
df=7-1=6
5)critical chi square value=CHIINV(0.001,6)=22.458
6)As,Chi square test statistic is greater than critical chi square,we reject the null hypothesis.
Yes,there is sufficient evidence to conclude that there are statistically significant differences in drunk driving arrests by day of the week.
Get Answers For Free
Most questions answered within 1 hours.