Question

Suppose that X and Y have joint probability density function given by: f(x, y) = 2...

Suppose that X and Y have joint probability density function given by: f(x, y) = 2 for 0 ≤ x ≤ 1 and 0 ≤ y ≤ x. What is Cov(X, Y )?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
a) The joint probability density function of the random variables X, Y is given as f(x,y)...
a) The joint probability density function of the random variables X, Y is given as f(x,y) = 8xy    if  0≤y≤x≤1 , and 0 elsewhere. Find the marginal probability density functions. b) Find the expected values EX and EY for the density function above c) find Cov  X,Y .
Suppose that the joint probability density function of the random variables X and Y is f(x,...
Suppose that the joint probability density function of the random variables X and Y is f(x, y) = 8 >< >: x + cy^2 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 0 otherwise. (a) Sketch the region of non-zero probability density and show that c = 3/ 2 . (b) Find P(X + Y < 1), P(X + Y = 1) and P(X + Y > 1). (c) Compute the marginal density function of X and Y...
Suppose that  X and Y  have the following joint probability density function. f (x, y)  = ...
Suppose that  X and Y  have the following joint probability density function. f (x, y)  =  3 /146 *x, 0  <  x  <  5,  y  >  0,  x − 2  <  y  <  x + 2 Find E(X).
2. The joint probability density function of X and Y is given by                               &nbsp
2. The joint probability density function of X and Y is given by                                                  f(x,y) = (6/7)(x² + xy/2), 0 < x < 1, 0 < y < 2.     f(x,y) =0 otherwise a) Compute the marginal densities of X and Y. b) Are X and Y independent. c) Compute the   conditional density function f(y|x) and check restrictions on function you derived d) probability P{X+Y<1}
The random variables X and Y have a joint density function given by f(x, y) =...
The random variables X and Y have a joint density function given by f(x, y) = ( 2e(−2x) /x, 0 ≤ x < ∞, 0 ≤ y ≤ x , otherwise. (a) Compute Cov(X, Y ). (b) Find E(Y | X). (c) Compute Cov(X,E(Y | X)) and show that it is the same as Cov(X, Y ). How general do you think is the identity that Cov(X,E(Y | X))=Cov(X, Y )?
Given the joint probability density function f ( x , y ) for 0 < x...
Given the joint probability density function f ( x , y ) for 0 < x < 3 and 0 < y < 2 x^2y/81 Find the conditional probability distribution of X=1 given that Y = 1 f ( x , y ) = x^2 y/ 81 . F i n d the conditional probability distribution of X=1 given that Y = 1. i . e . f (X ∣ y = 1 )( 1 )
7. Suppose that random variables X and Y have a joint density function given by: f(x,...
7. Suppose that random variables X and Y have a joint density function given by: f(x, y) = ? + ? 0 ≤ ?≤ 1, 0 ≤ ? ≤ 1 (a) Find the density functions of X and Y, f(x) and f(y). (b) Find E[X] and Var(Y).
Suppose X and Y are continuous random variables with joint density function f(x,y) = x +...
Suppose X and Y are continuous random variables with joint density function f(x,y) = x + y for 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. (a). Compute the joint CDF F(x,y). (b). Compute the marginal density for X and Y . (c). Compute Cov(X,Y ). Are X and Y independent?
2. 2. The joint probability density function of X and Y is given by                               &n
2. 2. The joint probability density function of X and Y is given by                                                  f(x,y) = (6/7)(x² + xy/2), 0 < x < 1, 0 < y < 2.     f(x,y) =0 otherwise a) Compute the marginal densities of X and Y. b) Are X and Y independent. c) Compute the   conditional density function f(y|x) and check restrictions on function you derived d) probability P{X+Y<1} [5+5+5+5 = 20]
Problem 4 The joint probability density function of the random variables X, Y is given as...
Problem 4 The joint probability density function of the random variables X, Y is given as f(x,y)=8xy if 0 ≤ y ≤ x ≤ 1, and 0 elsewhere. Find the marginal probability density functions. Problem 5 Find the expected values E (X) and E (Y) for the density function given in Problem 4. Problem 7. Using information from problems 4 and 5, find Cov(X,Y).