Question

Suppose that X is uniformly distributed on the interval [0,5], Y is uniformly distributed on the...

Suppose that X is uniformly distributed on the interval [0,5], Y is uniformly distributed on the interval [0,5], and Z is uniformly distributed on the interval [0,5] and that they are independent.

a)find the expected value of the max(X,Y,Z)

b)what is the expected value of the max of n independent random variables that are uniformly distributed on [0,5]?

c)find pr[min(X,Y,Z)<3]

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose that X is uniformly distributed on the interval [0,10], Y is uniformly distributed on the...
Suppose that X is uniformly distributed on the interval [0,10], Y is uniformly distributed on the interval [0,10], and Z is uniformly distributed on the interval [0,10] and that they are mutually independent. a)find the expected value of the min(X,Y,Z) b)find the standard deviation of the min(X,Y,Z)
The random variable X is uniformly distributed in the interval [0, α] for some α >...
The random variable X is uniformly distributed in the interval [0, α] for some α > 0. Parameter α is fixed but unknown. In order to estimate α, a random sample X1, X2, . . . , Xn of independent and identically distributed random variables with the same distribution as X is collected, and the maximum value Y = max{X1, X2, ..., Xn} is considered as an estimator of α. (a) Derive the cumulative distribution function of Y . (b)...
Suppose that X is a random variable uniformly distributed over the interval (0, 2), and Y...
Suppose that X is a random variable uniformly distributed over the interval (0, 2), and Y is a random variable uniformly distributed over the interval (0, 3). Find the probability density function for X + Y .
Included all steps. Thanks The random variable X is uniformly distributed in the interval [0, α]...
Included all steps. Thanks The random variable X is uniformly distributed in the interval [0, α] for some α > 0. Parameter α is fixed but unknown. In order to estimate α, a random sample X1, X2, . . . , Xn of independent and identically distributed random variables with the same distribution as X is collected, and the maximum value Y = max{X1, X2, ..., Xn} is considered as an estimator of α. (a) Derive the cumulative distribution function...
X is uniformly distributed on the interval (0, 1), and Y is uniformly distributed on the...
X is uniformly distributed on the interval (0, 1), and Y is uniformly distributed on the interval (0, 2). X and Y are independent. U = XY and V = X/Y . Find the joint and marginal densities for U and V .
1 point) Let A, B, and C be independent random variables, uniformly distributed over [0,5], [0,15],...
1 point) Let A, B, and C be independent random variables, uniformly distributed over [0,5], [0,15], and [0,2] respectively. What is the probability that both roots of the equation Ax2+Bx+C=0 are real?
Let ?, ?, and ? be independent random variables, uniformly distributed over [0,5], [0,1] , and...
Let ?, ?, and ? be independent random variables, uniformly distributed over [0,5], [0,1] , and [0,2] respectively. What is the probability that both roots of the equation ??^2+??+?=0 ar e real? P .S read careful, I had already waste a chance to post question in this
Consider n independent variables, {X1, X2, . . . , Xn} uniformly distributed over the unit...
Consider n independent variables, {X1, X2, . . . , Xn} uniformly distributed over the unit interval, (0, 1). Introduce two new random variables, M = max (X1, X2, . . . , Xn) and N = min (X1, X2, . . . , Xn). (A) Find the joint distribution of a pair (M, N). (B) Derive the CDF and density for M. (C) Derive the CDF and density for N. (D) Find moments of first and second order for...
Let Y1,Y2.....,Yn be independent ,uniformly distributed random variables on the interval[0,θ].,Y(n)=max(Y1,Y2,....,Yn),which is considered as an estimator...
Let Y1,Y2.....,Yn be independent ,uniformly distributed random variables on the interval[0,θ].,Y(n)=max(Y1,Y2,....,Yn),which is considered as an estimator of θ. Explain why Y is a good estimator for θ when sample size is large.
Let X and Y be independent random variables, uniformly distribued on the interval [0, 2]. Find...
Let X and Y be independent random variables, uniformly distribued on the interval [0, 2]. Find E[e^(X+Y) ].