Question

Customers arrive at a suburban ticket outlet at the rate of 14 per hour on Monday...

Customers arrive at a suburban ticket outlet at the rate of 14 per hour on Monday mornings (exponential interarrival times). Selling the tickets and providing general information takes an average of 3 minutes per customer, and varies exponentially. There is 1 ticket agent on duty on Mondays. What is the average number of customers waiting in line?

A. 1.633

B. 2.333

C. 2.5

D. 3.966

Homework Answers

Answer #1

Here given that customers arrive at suburban ticket outlet at the rate of 14 per hour. that is

Selling ticket and providing general information takes average 3 mins per customer.

Number of customers who will get service in one hour are 60/3 = 20 customers. i.e

The average number of customers waiting in a line is given by

So Answer is A) 1.633

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Customers arrive at a suburban ticket outlet at the rate of 3 per hour on Monday...
Customers arrive at a suburban ticket outlet at the rate of 3 per hour on Monday mornings. This can be described by a Poisson distribution. Selling the tickets and providing general information takes an average of 10 minutes per customer, and varies exponentially. There are 3 ticket agents on duty on Mondays. On Average, how much time does a customer spend Waiting in Line? Question 5 options: .001 .167 .0005 .1837 None of the Answers Listed is Correct
During lunch hour, customers arrive at a fast-food restaurant at the rate of 120 customers per...
During lunch hour, customers arrive at a fast-food restaurant at the rate of 120 customers per hour. The restaurant has one line, with three workers taking food orders at independent service stations. Each worker takes an exponentially distributed amount of time–on average 1 minute–to service a customer. Let Xt denote the number of customers in the restaurant (in line and being serviced) at time t. The process (Xt)t≥0 is a continuous-time Markov chain. Exhibit the generator matrix.
Customers arrive at a two server system at an exponential rate 10 customers per hour. However,...
Customers arrive at a two server system at an exponential rate 10 customers per hour. However, customers will only enter the resturant for food if there are no more than three people (including the two currently being attended to). Suppose that the amount of time required to service is exponential with a mean of five minutes for each server. (a) Write its transition diagram and balance equations. (b) What proportion of customers enter the resturant? (c) What is the average...
On average, 90 patrons arrive per hour at a hotel lobby (interarrival times are exponential) waiting...
On average, 90 patrons arrive per hour at a hotel lobby (interarrival times are exponential) waiting to check in. At present there are five clerks, and patrons wait in a single line for the first available clerk. The average time for a clerk to service a patron is three minutes (exponentially distributed). Clerks earn $10 per hour, and the hotel assesses a waiting time cost of $20 for each hour that a patron waits in line. If needed, round your...
customers arrive at a nail salon according to a poisson process with rate 10 per hour....
customers arrive at a nail salon according to a poisson process with rate 10 per hour. 30% of customers come in for only a manicure. 30% only for a pedicure, and 40% for both. what is the expe ted waiting time in MINUTES between manicure oy customer arrivals?
Four cashiers are on duty in a bank where customers may be assumed to arrive independently...
Four cashiers are on duty in a bank where customers may be assumed to arrive independently and at random, at an average rate of 60 per hour. If a cashier is free, then an arriving customer receives immediate attention; otherwise a central queue is formed. The service time for each cashier may be assumed to be exponentially distributed with mean 2 minutes. The traffic intensity  is . Assume that the queue is in equilibrium What is the probability that at any...
Suppose that the customers arrive at a hamburger stand at an average rate of 49 per...
Suppose that the customers arrive at a hamburger stand at an average rate of 49 per hour, and the arrivals follow a Poisson distribution. Joe, the stand owner, works alone and takes an average of 0.857 minutes to serve one customer. Assume that the service time is exponentially distributed. a) What is the average number of people waiting in queue and in the system? (2 points) b) What is the average time that a customer spends waiting in the queue...
Suppose that the customers arrive at a hamburger stand at an average rate of 49 per...
Suppose that the customers arrive at a hamburger stand at an average rate of 49 per hour, and the arrivals follow a Poisson distribution. Joe, the stand owner, works alone and takes an average of 0.857 minutes to serve one customer. Assume that the service time is exponentially distributed. a) What is the average number of people waiting in queue and in the system? (2 points) b) What is the average time that a customer spends waiting in the queue...
1.) A system has 5 servers. Customers arrive at a rate of 6 per hour and...
1.) A system has 5 servers. Customers arrive at a rate of 6 per hour and service time is 20 minutes. What is the service rate of the system? 2.) A system has 5 servers. Customers arrive at a rate of 6 per hour and service time is 20 minutes. What is the system utilization? (Show answer as a decimal.) 3.)Suppose that this system has 3 servers instead of 5. What is the probability there are no customers in the...
Customers arrive at coffee shop at a rate of 40 per hour. There are 2 servers...
Customers arrive at coffee shop at a rate of 40 per hour. There are 2 servers available and it takes an average of 1 minute to serve each customer. Using Table 12-6, what is the probability of no customers in the system? 0.333 0.5 0.667 0