probability
Strawberry(S) | Chocolate(L) | Vanilla(V) | Total | |
Icecream (I) | 63 | 21 | 8 | 92 |
Cake (C) | 5 | 34 | 9 | 48 |
68 | 55 | 17 | 140 |
1. P(S)
2.P(I)
3.P(S | I)
4. S and I independent?
5. P(S & I)
6. P(S or I)
7. Multiplication rule for dependent P(V | C)
Probability | Strawberry(S) | Chocolate(L) | Vanilla(V) | Total |
Icecream (I) | 63 | 21 | 8 | 92 |
Cake (C) | 5 | 34 | 9 | 48 |
Total | 68 | 55 | 17 | 140 |
1.
P(S) = 68 / 140 = 0.486
2.
P(I) = 92 / 140 = 0.657
3.
P(S | I) = P( S and I ) / P(I) = 63 / 92 = 0.685
4.
If S and I are independent, then :
P(S and I ) = P(S)* P(I)
P(S and I) = 63 / 140 = 0.45
P(S)*P(I) = (0.486)*(0.657) = 0.319
Since, P(S and I) is not equal to P(S)*P(I)
S and I are not independent
5.
P(S & I) = 63 / 140 = 0.450
6.
P(S or I) = P(S) + P(I) - P(S and I) = 0.486 + 0.657 - 0.450 = 0.693
7.
P(V | C) = P(V and C) / P(C) = 9 / 48 = 0.188
Get Answers For Free
Most questions answered within 1 hours.