Question

For this project, you will make decisions about how two parameters (proportions or means) compare using hypothesis tests, and you will estimate the difference between the two parameters using confidence intervals. For each confidence, report the following: the confidence interval limits rounded as directed (from StatCrunch) An interpretation of the confidence interval (e.g. "I am 95% confident ... .") Here is a template for reporting the answer for a sample confidence interval problem. Sample problem: Find a 90% confidence interval for the difference between the proportion of all males who use their smart phones to watch movies and the proportion of all females who do. Interval Limits: 0.036 to 0.264 Interpretation: "I am 90% confident the proportion of males who use their smartphones to watch movies is 3.6% to 26.4% higher than the proportion of females who do." Note, if the interval goes from a positive number to a negative number and therefore contains the number 0, then you are confident it plausible the two parameters being compares are equal to each other (its plausible the difference between the parameters is zero). For each hypothesis test, report the following: The null hypothesis, H0 The alternative hypothesis, H1 The test statistic rounded to the nearest hundredth (from StatCrunch) The P-value for the test (from StatCrunch) The formal decision (Reject H0 or Fail to reject H0) The conclusion of the test in non-technical terms Here is a template for reporting the answer for a sample hypothesis test problem. Sample problem: Use a 10% significance level to test the claim the proportion of all males who use their smart phones to watch movies is greater than the proportion of all females who do. Assume p1 = the proportion of males who use their smartphones to watch movies and p2 = the proportion of females who use their smartphones to watch movies. Null hypothesis: H0: p1 - p2 = 0 Alternative Hypothesis: H1: p1 - p2 > 0 Test Statistic: z = 2.15 P-value: 0.016 Decision: Reject the null hypothesis Conclusion: There is enough evidence to conclude the proportion of all males who use their smartphones to watch movies is greater than the proportion of females who do. The resources on the course home page will provide you more information on these types of hypothesis tests and confidence intervals and how to use StatCrunch to find test statistics, P-values, and confidence intervals. ******************************************************************************************* To complete this project, use the class data to complete some two sample inference. Type your answers into a Microsoft Word or rich text format document making sure you clearly report your answers for each problem and upload your document to submit your work. Use the Grapevine Online Statistics Data File in StatCrunch shared by user sgrapevine. Assume this data is representative of all online students. Make sure you use StatCrunch to find all confidence intervals, test statistics, and P-values. You will have to use the Where option to separate the data by gender. Each problem is worth a total of 6 points. For each confidence interval earn 4 points for reporting the correct interval limits and 2 points for correctly interpreting the interval. For each hypothesis test, earn 1 point for each correct component. You can also earn one point for rounding as directed for a total of 55 points. Note, this is not a team assignment. You must submit your own original work!

9) Use a 1% significance level to test the claim there is no difference between the hours of sleep on week nights and the hours of sleep on weekend nights for online students. (Hint: this is a matched pairs test)

Answer #1

Suppose it is desired to compare the proportion of male and
female students who voted in the last presidential election. We
decide to randomly and independently sample 1000 male and 1000
female students and ask if they voted or not. A printout of the
results is shown below. Hypothesis Test - Two Proportions Sample
Size Successes Proportion Males 1000 475 0.47500 Females 1000 525
0.52500 Difference -0.05000 Null Hypothesis: p1 = p2 Alternative
Hyp: p1 ≠ p2 SE (difference) 0.02236...

1. A study at State University was to determine student opinions
regarding non-revenue-generating athletics. Specifically, one
question in a survey asked students "Do you think that the women's
basketball program should be discontinued?" The data collected
revealed that 350 of the 1,000 females surveyed (sample 1)
responded "Yes" and 400 of the 1,000 males surveyed (sample 2)
responded "Yes." Test if the proportion of females who agree to
discontinue women’s basketball program is lower
than the proportion among males. Use...

In a random sample of males, it was found that 17 write with
their left hands and 221 do not. In a random sample of females, it
was found that 64 write with their left hands and 444 do not. Use a
0.05 significance level to test the claim that the rate of
left-handedness among males is less than that among females
H0:p1 = p2
H1:P1<P2
and the Z was - 2.23 and P value was 0.013 and the hypothesis...

A study was conducted to determine the proportion of people who
dream in black and white instead of color. Among 299 people over
the age of 55, 61dream in black and white, and among
287 people under the age of 25, 10 dream in black and white. Use
a 0.01 significance level to test the claim that the proportion of
people over 55 who dream in black and white is greater than the
proportion for those under 25. Complete parts...

1. Consider this hypothesis test:
H0: p1 - p2 = 0
Ha: p1 - p2 > 0
Here p1 is the population proportion of “yes” of
Population 1 and p2 is the population proportion of
“yes” of Population 2. Use the statistics data from a simple random
sample of each of the two populations to complete the following:
(8 points)
Population 1
Population 2
Sample Size (n)
400
600
Number of “yes”
300
426
Compute the test statistic z.
What...

Data for this analysis was collected over many years of class.
You can assume that this data represents samples selected from
larger groups of students.
Students in a business statistics class were asked to
agree/disagree with the following statement at the end of the
class: "I really enjoyed this class."
A study was conducted to determine if a difference existed
between the responses of students in two different teaching methods
used - traditional live teaching and online teaching. The Statistix...

1/ A physical therapist wants to determine the difference in the
proportion of men and women who participate in regular sustained
physical activity. What sample size should be obtained if she
wishes the estimate to be within five percentage points with 95%
confidence, assuming that
(a)she uses the estimates of 21.8% male and
18.3% female from a previous year? n = (Round up to the nearest
whole number.)
(b) she does not use any prior estimates?
2/ A survey asked,...

For each hypothesis test, you must state (a) hypotheses,
(b) test statistic, p-value, (c) rejection rule, and (d) both parts
of the conclusion. It is only necessary to calculate the
effect size if the problem calls for it. Use a .05 level of
significance for all hypothesis tests. Use StatCrunch to complete
all hypothesis tests and confidence intervals. Make sure you copy
and paste the relevant output for the solutions
(10 points) In a sample of 100 people who do...

From public records, individuals were identified as having been
charged with drunken driving not less than 6 months or more than 12
months from the starting date of the study. Two random samples from
this group were studied. In the first sample of 30 individuals, the
respondents were asked in a face-to-face interview if they had been
charged with drunken driving in the last 12 months. Of these 30
people interviewed face to face, 16 answered the question
accurately. The...

GMU officials are trying to determine if they are using the
correct number of campus shuttles for the number of individuals who
use them. If the proportion of individuals associated with GMU
(including faculty, staff, and students) who use the shuttles is
significantly different from 0.28, the officials believe they will
have to either remove or add a shuttle to the fleet. In a random
sample of 444 people taken from the population of all individuals
associated with GMU (including...

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 30 minutes ago

asked 32 minutes ago

asked 33 minutes ago

asked 51 minutes ago

asked 1 hour ago

asked 2 hours ago

asked 2 hours ago

asked 2 hours ago

asked 2 hours ago

asked 3 hours ago

asked 3 hours ago

asked 3 hours ago