Question

A continuous random variable X is uniformly distributed. The minimum value for X is 20 and...

A continuous random variable X is uniformly distributed. The minimum value for X is 20 and the maximum value for X is 120.

  1. Write down the rules for f(x), the density function for X.

  2. Find the median of this distribution.

  3. Find P(X>40)

  4. Find P( 25 < X < 55)

  5. Find P(X < 75)

Homework Answers

Answer #1

a) We are given here that the distribution is uniform from 20 to 120, therefore the distribution here is given as:

Therefore the probability density function for X here is obtained as:

This is the required PDF here.

b) The median of the distribution here is computed as:

Therefore 70 is the required median here.

c) The probability here is computed as:

Therefore 0.8 is the required probability here.

d) The probability here is computed as:

Therefore 0.3 is the required probability here.

e) The probability here is computed as:

Therefore 0.55 is the required probability here.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let X be a continuous random variable with the probability density function f(x) = C x,...
Let X be a continuous random variable with the probability density function f(x) = C x, 6 ≤ x ≤ 25, zero otherwise. a. Find the value of C that would make f(x) a valid probability density function. Enter a fraction (e.g. 2/5): C = b. Find the probability P(X > 16). Give your answer to 4 decimal places. c. Find the mean of the probability distribution of X. Give your answer to 4 decimal places. d. Find the median...
1. A random variable X has a normal distribution with a mean of 75 and a...
1. A random variable X has a normal distribution with a mean of 75 and a variance of 9. Calculate P(60 < X < 70.5). Round your answer to 4 decimal places. 2. A random variable X has a uniform distribution with a minimum of -50 and a maximum of -20. Calculate P(X > -25). Round your answer to 4 decimal places. 3.Which of the following statements about continuous random variables and continuous probability distributions is/are TRUE? I. The probability...
You are given: X is a continuous random variable that is uniformly distributed over (0, 5)....
You are given: X is a continuous random variable that is uniformly distributed over (0, 5). Y is a discrete random variable that is uniformly distributed over the integers 0, 1, 2, 3, and 4. Calculate P(X<=Y).
A continuous random variable X has the following probability density function F(x) = cx^3, 0<x<2 and...
A continuous random variable X has the following probability density function F(x) = cx^3, 0<x<2 and 0 otherwise (a) Find the value c such that f(x) is indeed a density function. (b) Write out the cumulative distribution function of X. (c) P(1 < X < 3) =? (d) Write out the mean and variance of X. (e) Let Y be another continuous random variable such that  when 0 < X < 2, and 0 otherwise. Calculate the mean of Y.
Let X be a continuous random variable with the following probability density function: f(x) = e^−(x−1)...
Let X be a continuous random variable with the following probability density function: f(x) = e^−(x−1) for x ≥ 1; 0 elsewhere (i) Find P(0.5 < X < 2). (ii) Find the value such that random variable X exceeds it 50% of the time. This value is called the median of the random variable X.
Suppose that X is a random variable uniformly distributed over the interval (0, 2), and Y...
Suppose that X is a random variable uniformly distributed over the interval (0, 2), and Y is a random variable uniformly distributed over the interval (0, 3). Find the probability density function for X + Y .
Consider a continuous random variable X with the probability density function f X ( x )...
Consider a continuous random variable X with the probability density function f X ( x ) = |x|/C , – 2 ≤ x ≤ 1, zero elsewhere. a) Find the value of C that makes f X ( x ) a valid probability density function. b) Find the cumulative distribution function of X, F X ( x ).
the continuous random variable X is uniformly distributed over the interval 4 to 10.What is P(5<=X<=11)?
the continuous random variable X is uniformly distributed over the interval 4 to 10.What is P(5<=X<=11)?
a continuous random variable X has a uniform distribution for 0<X<40 draw the graph of the...
a continuous random variable X has a uniform distribution for 0<X<40 draw the graph of the probability density function find p(X=27) find p(X greater than or equal to 27)
Let X be a continuous random variable uniformly distributed on the interval (0,2). Find E( |X-μ|...
Let X be a continuous random variable uniformly distributed on the interval (0,2). Find E( |X-μ| ) A. 1/12 B. 1/4 C. 1/3 D. 1/2