Construct 90%, 95%, and 99% confidence intervals to estimate
μ from the following data. State the point estimate.
Assume the data come from a normally distributed
population.
12.3 | 11.6 | 11.9 | 12.1 | 12.5 | 11.4 | 12.0 |
11.7 | 11.8 | 12.3 |
(Round the intermediate values to 4 decimal places.
Round your answers to 2 decimal places.)
90% confidence interval:_____________ ≤ μ ≤
_____________
95% confidence interval: ____________ ≤ μ ≤
_____________l
99% confidence interval: ____________ ≤ μ ≤
_____________
The point estimate is_________.
given data,
12.3 | 11.6 | 11.9 | 12.1 | 12.5 | 11.4 | 12.0 |
11.7 | 11.8 | 12.3 |
n = 10
sum = 119.60
mean = 11.96
var = 0.12
st dev = 0.35
we know that confidence interval is given by,
where, x = 11.96
t = 1.83 (t value at 90% confidence interval with DF = 10-1 = 9 is 1.83)
s = 0.35
n = 10
1) confidence interval at 90% confidence interval is,
= [11.76, 12.16]
2) confidence interval at 95% confidence interval is,
= [11.71, 12.21]
3) confidence interval at 99% confidence interval is,
= [11.60, 12.32]
Therefore,
90% confidence interval: 11.76 ≤ μ ≤
12.16
95% confidence interval: 11.71 ≤ μ ≤
12.21
99% confidence interval: 11.60 ≤ μ ≤
12.32
The point estimate is 11.96
Get Answers For Free
Most questions answered within 1 hours.