Question

Given a population with mean μ=100 and variance σ2=81, the Central Limit Theorem applies when the...

Given a population with mean μ=100 and variance σ2=81, the Central Limit Theorem applies when the sample size n≥30. A random sample of size n=30 is obtained.

  1. What are the mean, the variance, and the standard deviation of the sampling distribution for the sample mean?
  2. Describe the probability distribution of the sample mean and draw the graph of this probability distribution with its mean and standard deviation.
  3. What is the probability that x<101.5?
  4. What is the probability that x>102?
  5. What is the probability that 98<x<101?

SHOW WORK

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Given a population with a mean of µ = 100 and a variance σ2 = 12,...
Given a population with a mean of µ = 100 and a variance σ2 = 12, assume the central limit theorem applies when the sample size is n ≥ 25. A random sample of size n = 52 is obtained. What is the probability that   98.00 < x < 100.76?
Given a population with a mean of µ = 100 and a variance σ2 = 13,...
Given a population with a mean of µ = 100 and a variance σ2 = 13, assume the central limit theorem applies when the sample size is n ≥ 25. A random sample of size n = 28 is obtained. What is the probability that 98.02 < x⎯⎯ < 99.08?
What is wrong with the following statement of the central limit theorem? Central Limit Theorem.  If the...
What is wrong with the following statement of the central limit theorem? Central Limit Theorem.  If the random variables X1, X2, X3, …, Xn are a random sample of size n from any distribution with finite mean μ and variance σ2, then the distribution of will be approximately normal, with a standard deviation of σ / √n.
Question Central Limit Theorem a)According to the Central Limit Theorem, what are the mean and standard...
Question Central Limit Theorem a)According to the Central Limit Theorem, what are the mean and standard deviation of the sampling distribution of sample means? b)A population has a mean ?=1800 and a standard deviation ?=40. Find the mean and standard deviation of the sampling distribution of sample means when the sample size n=100.
According to the central limit theorem, if a sample of size 81 is drawn from a...
According to the central limit theorem, if a sample of size 81 is drawn from a population with a variance of 16, the standard deviation of the distribution of the sample means would equal _______. .98 .44 .68 .87 .75
Which of the following statements is not consistent with the Central Limit Theorem? 1. The Central...
Which of the following statements is not consistent with the Central Limit Theorem? 1. The Central Limit Theorem applies to non-normal population distributions. 2. The standard deviation of the sampling distribution will be equal to the population standard deviation. 3. The sampling distribution will be approximately normal when the sample size is sufficiently large. 4. The mean of the sampling distribution will be equal to the population mean.
The Central Limit Theorem says that when sample size n is taken from any population with...
The Central Limit Theorem says that when sample size n is taken from any population with mean μ and standard deviation σ when n is large, which of the following statements are true? The distribution of the sample mean is approximately Normal. The standard deviation is equal to that of the population. The distribution of the population is exactly Normal. The distribution is biased.
Apply the Central Limit Theorem for Sample Means A population of values has a normal distribution...
Apply the Central Limit Theorem for Sample Means A population of values has a normal distribution with μ=77 and σ=9.2. You intend to draw a random sample of size n=30. Find the probability that a sample of size n=30n=30 is randomly selected with a mean less than 76.8. P(M < 76.8) = Enter your answers as numbers accurate to 4 decimal places. Answers obtained using exact z-scores or z-scores rounded to 3 decimal places are accepted.
The Central Limit Theorem allows us to make predictions about where a sample mean will fall...
The Central Limit Theorem allows us to make predictions about where a sample mean will fall in a distribution of sample means. One way it does this is by explaining (using a formula) how the shape of the distribution will change depending on the sample size. What part of the Central Limit Theorem tells us about the shape of the distribution? The part that explains that there is no standardized table you can use to find probabilities once you use...
Given a population with a mean of µ = 230 and a standard deviation σ =...
Given a population with a mean of µ = 230 and a standard deviation σ = 35, assume the central limit theorem applies when the sample size is n ≥ 25. A random sample of size n = 185 is obtained. Calculate σx⎯⎯