Question

An insurance company supposes that the number of accidents that each of its policyholders will have...

An insurance company supposes that the number of accidents that each of its policyholders will have in a year is Poisson distributed. The rate parameter of the Poisson is also a random variable which has an exponential distribution with parameter 2.3. What is the probability that a randomly chosen policyholder has exactly 3 accidents next year?(Hint: You can use the following result for thenth moment of exponential random variable: If Z ∼Exp(μ) , then E (Zn )= n!/μn)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An insurance company supposes that the number of accidents that each of its policyholders will have...
An insurance company supposes that the number of accidents that each of its policyholders will have in a year is Poisson distributed. The rate parameter of the Poisson is also a random variable which has an exponential distribution with parameter 2.8. What is the probability that a randomly chosen policyholder has exactly 2 accidents next year?(Hint: You can use the following result for thenth moment of exponential random variable: If Z ∼Exp(μ) , then E (Zn )= n!/μn)
An insurance company issues 1250 vision care insurance policies. The number of claims led by a...
An insurance company issues 1250 vision care insurance policies. The number of claims led by a policyholder under a vision care insurance policy during one year is a Poisson random variable with mean 2. Assume the numbers of claims led by distinct policyholders are independent of one another. What is the approximate probability that there is a total of between 2450 and 2600 claims during a one-year period? (A) 0.68 (B) 0.82 (C) 0.87 (D) 0.95 (E) 1.00
According to the records of a health insurance company 60% of its policyholders submit a claim...
According to the records of a health insurance company 60% of its policyholders submit a claim during a one-year period. Answer the following questions. question1 )  Find the probability that exactly 18 out of 30 randomly selected policyholders will submit a claim during a one-year period. (Round your answer to 4 places after the decimal point). a) none b) 0.5689 c) 0.1474 d) 0.0129 Question 2. Find the probability that at most 12 out of 30 randomly selected policyholders will submit...
Show work/reason for answer if possible Q4. An insurance company offers its policyholders a number of...
Show work/reason for answer if possible Q4. An insurance company offers its policyholders a number of different premium payment options. For a randomly selected policyholder, let X = the number of months between successive payments. The CDF of X is given as follows: F[x]= 0      x<2 0,2    2<=x<4 0,4    4<=x<=6 1        x>=6 Also let Y = Min [2X+1, 6] Which one of the following is not true? Hint: Find the PMF of X first, then PMF of Y....
(Q24-Q27) An insurance company has gathered the information regarding the number of accidents reported per day...
(Q24-Q27) An insurance company has gathered the information regarding the number of accidents reported per day over a period of 100 days. The data can be found on the fourth sheet labeled “Accidents” in the “INFO1020 Final Exam DataFile.xlsx”. With the data, you are conducting a goodness-of-fit test to see whether the number of accidents per day can have a Poisson distribution. 24.What is the expected frequency of exactly 2 accidents per day? 25.What is the Chi-square test statistics? Round...
(Q24-Q27) An insurance company has gathered the information regarding the number of accidents reported per day...
(Q24-Q27) An insurance company has gathered the information regarding the number of accidents reported per day over a period of 100 days. The data can be found on the fourth sheet labeled “Accidents” in the “INFO1020 Final Exam DataFile.xlsx”. With the data, you are conducting a goodness-of-fit test to see whether the number of accidents per day can have a Poisson distribution. 24.What is the expected frequency of exactly 2 accidents per day? 25.What is the Chi-square test statistics? Round...
Multiple Choice Select the best answer from the available choices for each question. Which of the...
Multiple Choice Select the best answer from the available choices for each question. Which of the following is NOT part of the definition of a sample space S? S can be discrete or continuous Each outcome must be in S at most once Each element in S is equally likely Each outcome must be in S at least once S is a set of possible outcomes in an experiment Three A’s, three B’s, and two C’s are arranged at random...