Question

Prove that Pr[A] ≤ min(1, q/p) when Pr[B|A] ≥ p > 0 and Pr[B] ≤ q

Prove that Pr[A] ≤ min(1, q/p) when Pr[B|A] ≥ p > 0 and Pr[B] ≤ q

Homework Answers

Answer #1

in this problem we have to prove the following probability as follows :-

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Find the volume of the parallelepiped with adjacent edges PQ, PR, PS. P(3, 0, 3),    Q(−1, 2,...
Find the volume of the parallelepiped with adjacent edges PQ, PR, PS. P(3, 0, 3),    Q(−1, 2, 8),    R(6, 1, 1),    S(2, 6, 6)
Prove a)p→q, r→s⊢p∨r→q∨s b)(p ∨ (q → p)) ∧ q ⊢ p
Prove a)p→q, r→s⊢p∨r→q∨s b)(p ∨ (q → p)) ∧ q ⊢ p
The entity X ~ N(0, 1) (Standard normal distribution). (a) Find q such that Pr(X <=...
The entity X ~ N(0, 1) (Standard normal distribution). (a) Find q such that Pr(X <= q) = 0.25 (the first quartile of the standard normal distribution); (b) Find q such that Pr(X <= q) = 0.75 (third quartile of the standard normal distribution)
Prove or disprove that for any events A and B, P(A) + P(B) − 1 ≤...
Prove or disprove that for any events A and B, P(A) + P(B) − 1 ≤ P(A ∩ B) ≤ min{P(A), P(B)}.
Find the volume of the parallelepiped with adjacent edges PQ, PR, and PS. P(−2, 1, 0),...
Find the volume of the parallelepiped with adjacent edges PQ, PR, and PS. P(−2, 1, 0), Q(3, 3, 3), R(1, 4, −1), S(3, 6, 2)
1. Prove p∧q=q∧p 2. Prove[((∀x)P(x))∧((∀x)Q(x))]→[(∀x)(P(x)∧Q(x))]. Remember to be strict in your treatment of quantifiers .3. Prove...
1. Prove p∧q=q∧p 2. Prove[((∀x)P(x))∧((∀x)Q(x))]→[(∀x)(P(x)∧Q(x))]. Remember to be strict in your treatment of quantifiers .3. Prove R∪(S∩T) = (R∪S)∩(R∪T). 4.Consider the relation R={(x,y)∈R×R||x−y|≤1} on Z. Show that this relation is reflexive and symmetric but not transitive.
Prove equivalent: P⊃ (Q ⊃ P) and (~Q ⊃ (P ⊃ (~Q V P)))
Prove equivalent: P⊃ (Q ⊃ P) and (~Q ⊃ (P ⊃ (~Q V P)))
Let p and q be primes. Prove that pq + 1 is a square if and...
Let p and q be primes. Prove that pq + 1 is a square if and only if p and q are twin primes. (Recall p and q are twin primes if p and q are primes and q = p + 2.) (abstract algebra)
(§2.1) Let a,b,p,n ∈Z with n > 1. (a) Prove or disprove: If ab ≡ 0...
(§2.1) Let a,b,p,n ∈Z with n > 1. (a) Prove or disprove: If ab ≡ 0 (mod n), then a ≡ 0 (mod n) or b ≡ 0 (mod n). (b) Prove or disprove: Suppose p is a positive prime. If ab ≡ 0 (mod p), then a ≡ 0 (mod p) or b ≡ 0 (mod p).
Prove p ∨ (q ∧ r) ⇒ (p ∨ q) ∧ (p ∨ r) by constructing...
Prove p ∨ (q ∧ r) ⇒ (p ∨ q) ∧ (p ∨ r) by constructing a proof tree whose premise is p∨(q∧r) and whose conclusion is (p∨q)∧(p∨r).
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT