Question

Let X Geom(p). For positive integers n, k define P(X = n + k | X...

Let X Geom(p). For positive integers n, k define

P(X = n + k | X > n) = P(X = n + k) / P(X > n) :

Show that P(X = n + k | X > n) = P(X = k) and then briefly argue, in words, why this is true for geometric random variables.

Homework Answers

Answer #1

As geometric distribution is defined as number of trails needed to get the first success. Hence, it does not depends on the past trails whether the next outcome is a success or not, that is, geometric distribution has memoryless property. This is why the above result is true for geometric distribution.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Please include the argument in word, thanks Let X ∼ Geom(p). For positive integers n, k...
Please include the argument in word, thanks Let X ∼ Geom(p). For positive integers n, k define P(X = n + k | X > n) = P(X = n + k) / P(X > n) . Show that P(X = n + k | X > n) = P(X = k) and then briefly argue, in words, why this is true for geometric random variables.
let x be a discrete random variable with positive integer outputs. show that P(x=k) = P(...
let x be a discrete random variable with positive integer outputs. show that P(x=k) = P( x> k-1)- P( X>k) for any positive integer k. assume that for all k>=1 we have P(x>k)=q^k. use (a) to show that x is a geometric random variable.
Let X be a discrete random variable with positive integer outputs a show that p (X=...
Let X be a discrete random variable with positive integer outputs a show that p (X= K)= P( X> K-1) - P( X> k) for any positive integer k b Assume that for all k >I we have P (X>k)=q^k  use l() to show that X is a geometric random variable
Let m and n be positive integers and let k be the least common multiple of...
Let m and n be positive integers and let k be the least common multiple of m and n. Show that mZ intersect nZ is equal to kZ. provide justifications pleasw, thank you.
Let m and n be positive integers and let k be the least common multiple of...
Let m and n be positive integers and let k be the least common multiple of m and n. Show that mZ intersect nZ is equal to kZ. provide justifications please, thank you.
Let n be a positive integer and p and r two real numbers in the interval...
Let n be a positive integer and p and r two real numbers in the interval (0,1). Two random variables X and Y are defined on a the same sample space. All we know about them is that X∼Geom(p) and Y∼Bin(n,r). (In particular, we do not know whether X and Y are independent.) For each expectation below, decide whether it can be calculated with this information, and if it can, give its value (in terms of p, n, and r)....
Let a, b be positive integers and let a = k(a, b), b = h(a, b)....
Let a, b be positive integers and let a = k(a, b), b = h(a, b). Suppose that ab = n^2 show that k and h are perfect squares.
Let N denote the set of positive integers, and let x be a number which does...
Let N denote the set of positive integers, and let x be a number which does not belong to N. Give an explicit bijection f : N ∪ x → N.
Prove that for fixed positive integers k and n, the number of partitions of n is...
Prove that for fixed positive integers k and n, the number of partitions of n is equal to the number of partitions of 2n + k into n + k parts. show by using bijection
(14pts) Let X and Y be i.i.d. geometric random variables with parameter (probability of success) p,...
(14pts) Let X and Y be i.i.d. geometric random variables with parameter (probability of success) p, 0 < p < 1. (a) (6pts) Find P(X > Y ). (b) (8pts) Find P(X + Y = n) and P(X = k∣X + Y = n), for n = 2, 3, ..., and k = 1, 2, ..., n − 1.