Question

1) You compare the height and weight of 5 adult women. You get the following results:...

1)

You compare the height and weight of 5 adult women. You get the following results:

height     weight

60           121

67           143

62           131

70           153

66           138

Perform a complete test of the hypothesis that the population correlation coefficient (ρ) is 0. Show all steps (note - obviously this should be a one sided test! Make sure you know why!)

Homework Answers

Answer #1

Here we have to test, H0: = 0 against H1: > 0.

The test-statistic is given by, T = , where, r = sample correlation co-efficient = 0.9873, n = 5.

Hence, T = 10.7641.

Under H0, T ~ t-distribution with (n-2) d.f. i.e. 3 d.f.

The p-value = P(T > 10.7641) = 0.0009

Since, p-value < level of significance = 0.05 (assuming 5% level of significance), we reject the null hypothesis H0.

We conclude that the correlation co-efficient is significantly more than 0.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
You compare the height and weight of 5 adult women. You get the following results: height    ...
You compare the height and weight of 5 adult women. You get the following results: height     weight 60            121 67            143 62            131 70            153 66            138 Now let's assume you wanted to predict weights from heights. In other words, now let's use the same data from problem (1) and do a regression instead. (a) Calculate b0 and b 1 (b) Carefully draw your least square regression line on the plot you made in 1(a). (Don't just “sketch”, be a...
The following information is from a sample of 15 women. They recorded the women’s weight in...
The following information is from a sample of 15 women. They recorded the women’s weight in pounds and height in inches. You can use R to answer all of these questions, no need to do by hand. Height 58 58 59 61 61 63 64 65 67 67 67 70 72 72 72 Weight 117 117 120 123 123 139 142 142 146 146 150 150 150 154 164 Draw a scatterplot of the data. Describe the relationship between height...
given the following table compute the linear model height (inches) weight (pounds) 60 110 62 120...
given the following table compute the linear model height (inches) weight (pounds) 60 110 62 120 64 115 66 155 69 160 What are the following values? correlation coefficient b m what is the model? if the height =67 what is the weight?
Height: 62, 67, 62, 63, 67, 74, 63, 73, 63 Weight: 130, 140, 102, 140, 145,...
Height: 62, 67, 62, 63, 67, 74, 63, 73, 63 Weight: 130, 140, 102, 140, 145, 157, 130, 190, 135 3. (CLO 2) Test a claim that the mean height of people you know is not equal to 64 inches using the p-value method or the traditional method by completing the following: a. State H0 and H1. b. Find the p value or critical value(s). c. Draw a conclusion in context of the situation. 4. (CLO 3) Create a scatterplot...
1. You are trying to see if there is a relationship between height and weight. Write...
1. You are trying to see if there is a relationship between height and weight. Write down the following data, then by using a software program (e.g., Excel and SPSS), find the correlation between the following data: Height: 5' 11", 6' 2", 4' 3", 5' 5", 6' 6", 5' 2", 5' 9" Weight: 175, 190, 102, 150, 210, 130, 160 a. Using the above data, find the regression equation using weight as the dependent variable and height as the independent...
Perform a Spearman Rank Correlation Coefficient Test at a significance of 0.05. Use the following data...
Perform a Spearman Rank Correlation Coefficient Test at a significance of 0.05. Use the following data points Height (in.) Foot Length (in.) 63 10 66 12 62.5 9.4 74 10.5 70 11.3 72 11.3 71 12.5 64 9.1 72 10.9 71 10 74 12.1 67 10 69 11.1 65 9.6 62.8 9 72 11.3 68.8 10.5 69 10 65.3 9 53 7 71 10.3 74 11.7 70 10 72 10.6 72.5 12.8 67 9.5 69 10.9 74 11.6 68 9...
DETROIT (Y) ANN ARBOR (X) 2008       59                           2008    &
DETROIT (Y) ANN ARBOR (X) 2008       59                           2008       61 2009       60                           2009       58 2010       61                           2010       60 2011       69                           2011       68 2012       66                           2012       67 2013       62                           2013       64 2014       64                           2014       66 2015       71                           2015       70 2016       69                           2016       72 2017       66                           2017       64 h0  :There is a statistical correlation between the temperatures in two different Michigan cities. Please show all five steps of hypothesis testing for regression and correlation analysis. Make sure you show all five steps with...
You want to see if there is a statistical difference between the two groups. Run descriptives...
You want to see if there is a statistical difference between the two groups. Run descriptives and a two-tailed, two sample assuming equal variance t-test. Here's your data: Weight of Apples in Grams Apple ID Farm A Farm B 1 131 151 2 147 159 3 134 162 4 134 158 5 136 159 6 137 160 7 140 150 8 134 160 9 136 160 10 133 160 11 134 160 12 132 158 13 139 162 14 136...
Question 1 Suppose the average height of American adult males is 5 feet 10 inches (70...
Question 1 Suppose the average height of American adult males is 5 feet 10 inches (70 inches) and the standard deviation is 5 inches. If we randomly sample 100 men: What will the expected value of the average height of that sample be? (i.e. the mean of the sampling distribution) What will the standard deviation of the average height in that sample be? (i.e. the standard deviation of the sampling distribution) How big of a sample would we need to...
A physiological experiment was concluded to study the effect of various factors on a pulse rate....
A physiological experiment was concluded to study the effect of various factors on a pulse rate. The participants took their own pulse. They then were asked to flip a coin. If their coin came up head, they were to run in place for 1 minute. Then everyone took their own pulse again. The dataset pulse.txt, available from Moodle, contains the following variables: ROW- id numbers, from 1 to 92; PULSE1- first pulse rate; PULSE2- second pulse rate; RAN-1=ran in place,...