If n=27, ¯ x (x-bar)=46, and s=9, find the margin of error at a 95% confidence level (use at least two decimal places)
If n=19, ¯xx¯ (x-bar)=48, and s=6, find the margin of error at a 95% confidence level (use at least two decimal places)
If n=16, ¯xx¯ (x-bar)=48, and s=6, find the margin of error at a 99% confidence level (use at least three decimal places)
Answer:
a)
Given,
degree of freedom = n - 1 = 27 - 1 = 26
alpha = 0.05
t(alpha/2,df) = t(0.05/2 , 26) = 2.055529 = 2.056
Margin of error = t*s/sqrt(n)
substitute values
= 2.056*9/sqrt(27)
= 3.56
b)
Given,
degree of freedom = n - 1 = 19 - 1 = 18
alpha = 0.05
t(alpha/2,df) = t(0.05/2 , 18) = 2.100922 = 2.101
Margin of error = t*s/sqrt(n)
substitute values
= 2.101*6/sqrt(19)
= 2.89
c)
Given,
degree of freedom = n - 1 = 16 - 1 = 15
alpha = 0.05
t(alpha/2,df) = t(0.05/2 , 15) = 2.131449 = 2.131
Margin of error = t*s/sqrt(n)
substitute values
= 2.131*6/sqrt(16)
= 3.20
Get Answers For Free
Most questions answered within 1 hours.