Question

Assuming that the population is normally​ distributed, construct a 95 % confidence interval for the population​...

Assuming that the population is normally​ distributed, construct a 95 % confidence interval for the population​ mean, based on the following sample size of n equals 5.n=5.

1,2,3,4 and 17

In the given​ data, replace the value 17 with 5 and recalculate the confidence interval. Using these​ results, describe the effect of an outlier​ (that is, an extreme​ value) on the confidence​ interval, in general.

Find a 95 % confidence interval for the population​ mean, using the formula or technology.

Homework Answers

Answer #1

Here, mean = 3 , std.dev = 1.5811
n = 5

at 95% confidence interval the t value is ,

df =n -1 = 5 - 1 =4

alpha = 1- 0.95 = 0.05
alpha/2 = 0.05/2 = 0.025

t(alpha/2,df) = t (0.025,4) = 2.7764


Margin of error = t *(sigma/sqrt(n))
= 2.7764 *(1.5811/sqrt(5))
= 1.9632

At 95% confidence interval the mean is,

mean -E < mu < mean +E
3 - 1.9632 < mu < 3 + 1.9632

1.0368 < mu < 4.9632


The presence of an outlier in the original data decreases the value of the sample mean and greatly decreases the sample standard​ deviation, narrowing the confidence interval.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Assuming that the population is normally​ distributed, construct a 95% confidence interval for the population​ mean,...
Assuming that the population is normally​ distributed, construct a 95% confidence interval for the population​ mean, based on the following sample size of n=8. ​1, 2,​ 3, 4, 5, 6, 7 and 16 In the given​ data, replace the value 16 with 8 and recalculate the confidence interval. Using these​ results, describe the effect of an outlier​ (that is, an extreme​ value) on the confidence​ interval, in general. Find a 95% confidence interval for the population​ mean, using the formula...
Assuming that the population is normally​ distributed, construct a 99 % confidence interval for the population​...
Assuming that the population is normally​ distributed, construct a 99 % confidence interval for the population​ mean, based on the following sample size of n equals 5. ​1, 2,​ 3, 4​, and 26 In the given​ data, replace the value 26 with 5 and recalculate the confidence interval. Using these​ results, describe the effect of an outlier​ (that is, an extreme​ value) on the confidence​ interval, in general. Find a 99 % confidence interval for the population​ mean, using the...
Assuming that the population is normally​ distributed, construct a 90 % confidence interval for the population​...
Assuming that the population is normally​ distributed, construct a 90 % confidence interval for the population​ mean, based on the following sample size of n equals 6. ​1, 2,​ 3, 4 comma 5​, and 30 In the given​ data, replace the value 30 with 6 and recalculate the confidence interval. Using these​ results, describe the effect of an outlier​ (that is, an extreme​ value) on the confidence​ interval, in general. Find a 90 % confidence interval for the population​ mean,...
Assuming that the population is normally​ distributed, construct a 99 %99% confidence interval for the population​...
Assuming that the population is normally​ distributed, construct a 99 %99% confidence interval for the population​ mean, based on the following sample size of n equals 5.n=5.​1, 2,​ 3, 44​, and 2020 In the given​ data, replace the value 2020 with 55 and recalculate the confidence interval. Using these​ results, describe the effect of an outlier​ (that is, an extreme​ value) on the confidence​ interval, in general. Find a 99 %99% confidence interval for the population​ mean, using the formula...
Assuming that the population is normally​ distributed, construct a 95​% confidence interval for the population mean...
Assuming that the population is normally​ distributed, construct a 95​% confidence interval for the population mean for each of the samples below. Explain why these two samples produce different confidence intervals even though they have the same mean and range. Sample​ A: 1   3   3   4   5   6   6   8 Sample​ B: 1   2   3   4   5   6   7   8 Construct a 95​% confidence interval for the population mean for sample A. Construct a 95​% confidence interval for the population...
Assuming that the population is normally​ distributed, construct a 95​% confidence interval for the population mean...
Assuming that the population is normally​ distributed, construct a 95​% confidence interval for the population mean for each of the samples below. Explain why these two samples produce different confidence intervals even though they have the same mean and range. Sample A: 1 4 4 4 5 5 5 8 Sample B: 1 2 3 4 5 6 7 8 a. Construct a 95​% confidence interval for the population mean for sample A. b. Construct a 95​% confidence interval for...
Assuming that the population is normally​ distributed, construct a 95​% confidence interval for the population mean...
Assuming that the population is normally​ distributed, construct a 95​% confidence interval for the population mean for each of the samples below. Sample​ A: 11    33    44    44    55    55    66    88 Full data set Sample​ B: 11    22    33    44    55    66    77    88 Construct a 95​% confidence interval for the population mean for sample A. ____ ≤ μ ≤ _____
If X=95​, S equals 6​, and n equals 16, and assuming that the population is normally​...
If X=95​, S equals 6​, and n equals 16, and assuming that the population is normally​ distributed, construct a 95 % confidence interval estimate of the population​ mean.
10 state which type of parameter is to be estimated, then construct the confidence interval 10....
10 state which type of parameter is to be estimated, then construct the confidence interval 10. A simple random sample of size 17 has mean x̄ = 8.44 and standard deviation s = 5.38. The population is normally distributed. Construct a 95% confidence interval for the population standard deviation 10 state which type of parameter is to be estimated, then construct the confidence interval 10. A simple random sample of size 17 has mean x̄ = 8.44 and standard deviation...
Assuming that the population is normally​ distributed, construct a 99​% confidence interval for the population mean...
Assuming that the population is normally​ distributed, construct a 99​% confidence interval for the population mean for each of the samples below. Explain why these two samples produce different confidence intervals even though they have the same mean and range. Sample A: 1,3,3,3,6,6,6,8 Sample B: 1,2,3,4,5,6,7,8 Q1. Construct a 99​% confidence interval for the population mean for sample A. ____ <_ u <_ _____ Q2. Construct a 99​% confidence interval for the population mean for sample B. ____ <_ u...