Answer:
Given,
Ho : p = 0.0415
Ha : p < 0.0415
sample proportion p^ = x/n = 144173 / 3970671 = 0.0363
test statistic = (p^ - p)/sqrt(pq/n)
substitute values
= (0.0363 - 0.0415)/sqrt(0.0415(1-0.0415)/3970671)
= - 51.95
Critical value = - 1.96
95% CI = p^ +/- z*sqrt(p^(1-p^)/n)
substitute values
= 0.0363 +/- 1.96*sqrt(0.0363(1-0.0363)/3970671)
= 0.0363 +/- 0.000184
= (0.036116 , 0.036484)
Here CI doesn't contain 0.0415, so we accept alternative.
In this, we observe that, test statistic < critical value, so we reject Ho.
P value = P(t < - 51.95)
= 0
Here p value < alpha, so we reject Ho.
So there is sufficient evidence to support the claim.
Get Answers For Free
Most questions answered within 1 hours.