Question

Let X1,.....,Xn be a random sample from N(μ,σ2), and both μ and σ2 are unknown, with...

Let X1,.....,Xn be a random sample from N(μ,σ2), and both μ and σ2 are unknown, with -∞<μ<∞ and σ2 > 0.

a. Develop a likelihood ratio test for H0: μ <= μ0 vs. H1: μ > μ0

b. Develop a likelihood ratio test for H0: μ >= μ0 vs. H1: μ < μ0

Homework Answers

Answer #1

Solution:

Given that....

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
If (x1, . . . , xn) is a sample from an N(μ0, σ2) distribution, where...
If (x1, . . . , xn) is a sample from an N(μ0, σ2) distribution, where σ2 > 0 is unknown and μ0 is known a.determine the MLE of σ2. b. show that the mle of σ2 is asymptotically normal
Let X1, X2, · · · , Xn be a random sample from an exponential distribution...
Let X1, X2, · · · , Xn be a random sample from an exponential distribution f(x) = (1/θ)e^(−x/θ) for x ≥ 0. Show that likelihood ratio test of H0 : θ = θ0 against H1 : θ ≠ θ0 is based on the statistic n∑i=1 Xi.
Let X1, …,Xn be a random sample from f(x; θ) = θ exp(-xθ) , x>0. Use...
Let X1, …,Xn be a random sample from f(x; θ) = θ exp(-xθ) , x>0. Use the likelihood ratio test to determine test H0 θ=1 against H1 θ ≠ 1.
Let X1,..., Xn be a random sample from the Rayleigh distribution: Use the likelihood ratio test...
Let X1,..., Xn be a random sample from the Rayleigh distribution: Use the likelihood ratio test to give a form of test (without specifying the value of the critical value) for H0: θ= 1 versus H1:≠1
Let X1,..., Xn be a random sample from the Geometric distribution: Use the likelihood ratio test...
Let X1,..., Xn be a random sample from the Geometric distribution: Use the likelihood ratio test to give a form of test (without specifying the value of the critical value) for H0: p= 1 versus H1:p≠1
Suppose that X1,...,Xn are iid N(μ,σ2) where μ is unknown but σ is known.  μ>=2. Let z(μ)=μ3....
Suppose that X1,...,Xn are iid N(μ,σ2) where μ is unknown but σ is known.  μ>=2. Let z(μ)=μ3. Find an initial unbiased estimator T for z(μ). Next, derive the Rao-Blackwellized version of T.
Suppose that X1,..Xn are iid N(0,σ2) where σ>0 is the unknown parameter. with preassigned α in...
Suppose that X1,..Xn are iid N(0,σ2) where σ>0 is the unknown parameter. with preassigned α in (0,1), derive a level α LR test for the null hypothesis H0: σ2 = σ02 against H1: σ2/=σ02 in the implementable form. (Hint: When is the function g(u) = ue1-u, u > 0 increasing? When is it decreasing? Is your test one-sided or two-sided?)
4. Suppose that we have X1, · · · Xn iid∼ N(µ, σ2 ) (a) Derive...
4. Suppose that we have X1, · · · Xn iid∼ N(µ, σ2 ) (a) Derive a 100(1 − α)% confidence interval for σ 2 when µ is unknown. (b) Derive a α−test for σ 2 when hypotheses is given as: H0 : σ^2 = σ^2sub0 vs H1 : σ^2 < σ^2sub0 . where σ 2 0 > 0 and µ is unknown. I am particularly struggling with b. Part a I could do.
Suppose that X1,..., Xn∼iid N(μ,σ2). a) Suppose that μ is known. What is the MLE of...
Suppose that X1,..., Xn∼iid N(μ,σ2). a) Suppose that μ is known. What is the MLE of σ? (b) Suppose that σ is known. What is the MLE of μ? (c) Suppose that σ is known, and μ has a prior distribution that is normal with known mean and variance μ0 and σ02. Find the posterior distribution of μ given the data.
5. Let a random sample, X1, X2, ..., Xn of size n = 10 from a...
5. Let a random sample, X1, X2, ..., Xn of size n = 10 from a distribution that is N(μ1, σ2 ) give ̄x = 4.8 and s 2+ 1 = 8.64 and a random sample, Y1, Y2, ..., Yn of size n = 10 from a distribution that is N(μ2, σ2 ) give y ̄ = 5.6 and s 2 2 = 7.88. Find a 95% confidence interval for μ1 − μ2.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT