For each of the following sets of results, compute the
appropriate test statistic, test the indicated alternative
hypothesis, and compute the effects size(s) indicating their
magnitude:
set | Hypothesis | μ0 | σ | n | α | |
a) | μ ≠ μ0 | 49 | 50.8 | 4.4 | 44 | 0.20 |
b) | μ > μ0 | 43.9 | 40.8 | 7.5 | 48 | 0.10 |
c) | μ < μ0 | 35.7 | 30 | 8.6 | 40 |
0.15 |
a)
Compute the appropriate test statistic(s) to make a decision about
H0.
critical value =__________ ; test statistic =
________________
Decision: ***(choose one)*** 1. Reject H0 or 2. Fail to
reject H0
Compute the corresponding effect size(s) and indicate
magnitude(s).
d = _______________; *(choose one)1. na 2.
trivial effect 3. small effect 4. medium effect 5. large effect
b)
Compute the appropriate test statistic(s) to make a decision about
H0.
critical value = ; test statistic =
Decision: ---Select--- Reject H0 or Fail to reject
H0
Compute the corresponding effect size(s) and indicate
magnitude(s).
d ______________= ; *(choose
one)1. na 2. trivial effect 3. small effect 4. medium effect 5.
large effect
c)
Compute the appropriate test statistic(s) to make a decision about
H0.
critical value =__________ ; test statistic =
________________
Decision: ***(choose one)*** 1. Reject H0 or 2. Fail to
reject H0
Compute the corresponding effect size(s) and indicate
magnitude(s).
d ______________= ; *(choose
one)1. na 2. trivial effect 3. small effect 4. medium effect 5.
large effect
a)
Standard Error , SE = σ/√n = 4.4/√44=
0.6633
Z-test statistic= (x̅ - µ )/SE =
(49-50.8)/0.6633= -2.7136
critical z value, z* = ±
1.2816
reject Ho
Cohen's d=|(mean - µ )/std dev|= 0.41 (medium)
b)
Standard Error , SE = σ/√n = 7.5/√48=
1.0825
Z-test statistic= (x̅ - µ )/SE =
(43.9-40.8)/1.0825= 2.8637
critical z value, z* =
1.2816
reject Ho
Cohen's d=|(mean - µ )/std dev|= 0.41 (medium)
c)
Standard Error , SE = σ/√n = 8.6/√40=
1.3598
Z-test statistic= (x̅ - µ )/SE =
(35.7-30)/1.3598= 4.1919
critical z value, z* =
-1.0364
fail to reject Ho
d = na
Get Answers For Free
Most questions answered within 1 hours.