Find the following probability for the standard normal random variable z.
a. |
P(zgreater than>1.321.32) |
d. |
P(negative 1.79−1.79less than or equals≤zless than<negative 0.61−0.61) |
b. |
P(zless than<negative 1.96−1.96) |
e. |
P(zgreater than>0) |
c. |
P(0.690.69less than or equals≤zless than or equals≤2.592.59) |
f. |
P(negative 2.52−2.52less than or equals≤zless than or equals≤1.011.01) |
(Round to three decimal places as needed.)
a) P( Z > 1.32) = 1- P( Z < 1.32)
= 1- 0.90658
=0.09342
b) P( Z < -1.96)= 1- P( Z < 1.96)
= 1- 0.97500
= 0.025
c) P(0.69 ≤ Z ≤ 2.59)= P( Z <2.59) - P( Z < 0.69)
= 0.99520 - 0.75490
= 0.2403
d)P( -1.79 ≤ Z< -0.61)= P( z < -0.61) - P( z < -1.79)
= [ 1- P(z < 0.61)] - [ 1- P( z < 1.79)]
= P( z < 1.79) - P( z < 0.61)
= 0.96327 - 0.72907
= 0.2342
e) P( Z > 0) = 1- P( z < 0)
= 1- 0.5
= 0.5
f) P( -2.52 ≤ Z ≤ 1.01 )= P( z < 1.01) - P( z < -2.52)
= P( z < 1.01) -[1- P( z < 2.52)]
= P( z < 1.01) - 1 + P( z < 2.52)
= 0.84375 - 1 + 0.99413
= 0.83788
Get Answers For Free
Most questions answered within 1 hours.