Weight in pounds, X |
Miles per Gallon, Y |
3779 | 16 |
3938 | 15 |
2628 | 26 |
3616 | 20 |
3397 | 21 |
2910 | 22 |
3733 | 16 |
2521 | 24 |
3481 | 19 |
3881 | 17 |
3367 | 19 |
a) Find the least-squares regression line treating weight as the explanatory variable and miles per gallon as the response variable.
y=__x + __
b) Interpret the slope and y-intercept, if appropriate
Ans:
Weight in pounds, X | Miles per Gallon, Y | xy | x^2 | y^2 | |
1 | 3779 | 16 | 60464 | 14280841 | 256 |
2 | 3938 | 15 | 59070 | 15507844 | 225 |
3 | 2628 | 26 | 68328 | 6906384 | 676 |
4 | 3616 | 20 | 72320 | 13075456 | 400 |
5 | 3397 | 21 | 71337 | 11539609 | 441 |
6 | 2910 | 22 | 64020 | 8468100 | 484 |
7 | 3733 | 16 | 59728 | 13935289 | 256 |
8 | 2521 | 24 | 60504 | 6355441 | 576 |
9 | 3481 | 19 | 66139 | 12117361 | 361 |
10 | 3881 | 17 | 65977 | 15062161 | 289 |
11 | 3367 | 19 | 63973 | 11336689 | 361 |
Total | 37251 | 215 | 711860 | 128585175 | 4325 |
a)
slope,b=(11*711860-37251*215)/(11*128585175-37251^2)=-0.00666
y-intercept,a=(215-(-0.0066607)*37251)/11=42.101
Regression equation:
y'=-0.00666 x+42.101
Slope:
For each unit of increase in weight(in pounds),there will be decrease of 0.00666 miles per gallon.
intercept:
When weight is 0 pounds,Mileage is 42.101
Get Answers For Free
Most questions answered within 1 hours.